Browse by Journal
Number of items: 9.
B
Brown, Malcolm, Dohnal, Tomáš, Plum, Michael, Wood, Ian (2025) Spectrum of the Maxwell Equations for a flat interface between homogeneous dispersive media. Communications in Mathematical Physics, 406 . Article Number 3. ISSN 1432-0916. (doi:10.1007/s00220-024-05154-9) (KAR id:108129) |
C
Casati, Matteo, Wang, Jing Ping (2020) A Darboux-Getzler theorem for scalar difference Hamiltonian operators. Communications in Mathematical Physics, 374 . pp. 1497-1529. ISSN 0010-3616. E-ISSN 1432-0916. (doi:10.1007/s00220-019-03497-2) (KAR id:73755) |
Casati, Matteo, Wang, Jing Ping (2022) Hamiltonian structures for integrable nonabelian difference equations. Communications in Mathematical Physics, 392 . pp. 219-278. ISSN 0010-3616. (doi:10.1007/s00220-022-04348-3) (KAR id:93235) |
Casati, Matteo (2015) On Deformations of Multidimensional Poisson Brackets of Hydrodynamic Type. Communications in Mathematical Physics, 335 (2). pp. 851-894. ISSN 0010-3616. E-ISSN 1432-0916. (doi:10.1007/s00220-014-2219-2) (KAR id:67928) |
Carpentier, Sylvain, Mikhailov, Alexander V., Wang, Jing Ping (2019) Rational recursion operators for integrable differential-difference equations. Communications in Mathematical Physics, 370 (3). pp. 807-851. ISSN 0010-3616. (doi:10.1007/s00220-019-03548-8) (KAR id:67130) |
F
Fordy, Allan P., Hone, Andrew N.W. (2014) Discrete integrable systems and Poisson algebras from cluster maps. Communications in Mathematical Physics, 325 (2). pp. 527-584. ISSN 0010-3616. (doi:10.1007/s00220-013-1867-y) (KAR id:41486) |
K
Krusch, Steffen, Speight, J.Martin (2006) Fermionic quantization of Hopf solitons. Communications in Mathematical Physics, 264 (2). pp. 391-410. ISSN 0010-3616. (doi:10.1007/s00220-005-1469-4) (KAR id:6064) |
Krusch, Steffen (2013) Quantum lump dynamics on the two-sphere. Communications in Mathematical Physics, 322 (1). pp. 95-126. ISSN 0010-3616. (doi:10.1007/s00220-013-1730-1) (KAR id:31261) |
M
Mikhailov, Alexander V., Novikov, Vladimir S., Wang, Jing Ping (2022) Perturbative Symmetry Approach for Differential–Difference Equations. Communications in Mathematical Physics, . ISSN 0010-3616. (doi:10.1007/s00220-022-04383-0) (KAR id:94858) |