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Abstract: In this paper we extend the notion of Poisson–Lichnerowicz cohomology,
an object encapsulating the building blocks for the theory of deformations of Hamil-
tonian operators, to the difference case. A local scalar difference Hamiltonian operator
is a polynomial in the shift operator and its inverse, with coefficients in the algebra of
difference functions, endowing the space of local functionals with the structure of a Lie
algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the
symmetries and the admissible deformations of such an algebra. The analogue notion
for the differential case has been widely investigated: the first and most important result
is the triviality of all but the lowest cohomology for first order Hamiltonian differen-
tial operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the
operator K0 = S − S−1, which is the normal form for (−1, 1) order scalar difference
Hamiltonian operators; we obtain the same result as Getzler did, namely H p(K0) = 0
∀p > 1, and explicitly compute H0(K0) and H1(K0). We then apply our main result to
the classification of lower order scalar Hamiltonian operators recently obtained by De
Sole, Kac, Valeri, and Wakimoto.
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1. Introduction

Hamiltonian systems, both finite and infinite dimensional, are defined by two classes of
objects: Poisson brackets, describing their underlying geometric structures, and Hamil-
tonian functions (or functionals), providing their dynamical content.

In the context of partial differential equations and of differential–difference equations,
namely in the infinite dimensional settings, the notion of Poisson bracket is equivalently
given in terms of so-called Hamiltonian operators.

Let us consider the class of evolutionary equation for a set of functions ui (x, t),
i ∈ {1, . . . , �}, of two (sets of) variables. Here t is the time, or the parameter of the flow
the equations define, and x is the so-called independent (or space) variable. We call �

the number of components of the system.
An evolutionary system of differential equations

∂t u
i = Fi (u, ∂u, ∂2u, . . .) (1.1)

is said to be Hamiltonian for a (Hamiltonian) functional H if it can be written in terms
of Poisson brackets {·, ·} as

∂t u
i = {ui , H} (1.2)

or, equivalently, in terms of the Hamiltonian structure K as

∂t u
i = K δH. (1.3)

Here ∂ in (1.1) is the partial derivation with respect to the space variables (that can be
either one or several) acting on the dependent variables u j , and δH is the variational
derivative. The operator K can be a differential or pseudo-differential operator, depend-
ing on the system under investigation. The Poisson bracket in (1.2) is defined by the
Hamiltonian structure as {F, G} = ∫

δF K δG.
The prototypical example is KdV equation

∂t u = 6uux + uxxx .

It is Hamiltonian with respect to the operator K = ∂x and the local functional

H =
∫ (

u3 − u2
x

2

)

.

The study of Hamiltonian operators is particularly important in the theory of in-
tegrable systems and in deformation quantisation. It is well known, for instance, that
Magri [17] introduced the concept of compatible pair of Poisson brackets (Hamiltonian
structure) and related it to the complete integrability of systems of partial differential
equations.

The notion of Poisson (or Poisson–Lichnerowicz) cohomology carries a lot of infor-
mation about the properties of a Poisson bracket, or equivalently—in the infinite dimen-
sional setting—of a Hamiltonian structure. On finite dimensional manifolds, Poisson
brackets are identified with Poisson bivectors [15]. Such bivectors can be used to define
a differential on the complex of multivectors, whose cohomology is the Poisson coho-
mology. It provides information about the center of the Poisson algebra (the Casimir
functions), its symmetries, and the compatible bivectors that can be defined on the same
manifold.

Hamiltonian structures as the ones we have introduced can be interpreted as Poisson
bivectors defined on some infinite dimensional manifold; this analogy is suggested by
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the fact that they define Poisson brackets with similar properties to the ones used for
finite-dimensional systems; we then similarly define the complex of multivector fields
and the Poisson cohomology.

For Poisson bivectors defined by differential operators, as the one we use for KdV
equation, the main result has been proved by Getzler [12].

He considersHamiltonian operators of first order, for systemswith one space variable;
Dubrovin and Novikov have proved long ago [10] that there always exist a system of
coordinates for which such operators have the constant form

K = K i j∂x , K i j = K ji

for i, j = 1, . . . , �. Getzler’s theorem states that H p(K ) = 0 for p � 1; in particular,
the vanishing of the second and third cohomology group allows a complete classification
of higher order compatible Hamiltonian operators, since they are all equal to K after a
generalised change of coordinates called a Miura transformation.

It is, for instance,well known that the secondHamiltonian structure forKdVequation

K2 = 4u∂x + 2ux + ∂3x

can be obtained by the first one K = ∂x after the Miura transformation

u �→ v = u2 + iux .

The scalar differential case depending on several independent variables has been ad-
dressed in [2,3]: in this case the Poisson cohomology is infinite-dimensional, however
its highly non-trivial third group imposes enough constraints to classify all the compat-
ible Hamiltonian operators up to an arbitrary order.

A natural extension from the continuous to the discrete setting is to study differential–
difference systems. The basic example is the Volterra chain equation [19]; we have a
function u(n, t) of a lattice variable n ∈ Z and of the time t , solution of the equation

∂t u(n, t) = u(n, t) (u(n + 1, t) − u(n − 1, t)) .

By denoting u(n, t) := u0 = u, u(n + m, t) := um and introducing the shift operator
S f (u, u1, . . . , un) = f (u1, u2, . . . , un+1) we can write the Volterra equation as

∂t u = u(u1 − u−1).

This equation can be cast in Hamiltonian form defining the Hamiltonian difference
operator

K = uu1S − uu−1S−1

and the functional H = ∫
u, so that δH = 1.

The foundations of calculus for difference operators have been developed by Kuper-
shmidt [13], and can be read alongside the better-known formal calculus of variations
introduced by Gel’fand and Dikii [11] for systems of PDEs. The notion of Poisson
bivector is defined within this framework; however, we can define a tailored version of
the θ formalism (on the lines of what Getzler did for the differential case) which allows
to deal in a more efficient way with the complex of multivector fields. Moreover, De
Sole et al. have recently introduced the notion of multiplicative Poisson vertex algebras
[7] which is yet another equivalent formulation and which can be effectively used for
explicit computations.
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The main purpose of this paper is the extension to the difference case of the notion of
Poisson cohomology of a Hamiltonian structure. In this context, Hamiltonian structures
are givenbydifference operators (we call them, in analogywith the differential case, local
operators), or ratios of difference operators [5]. Our principal result is the computation
of the Poisson cohomology for a scalar, order (−1, 1) difference Hamiltonian operator.
We obtain, although in a very different context and with more modern techniques, an
analogue of Getzler’s result.

Theorem 1. Let us consider the scalar difference Hamiltonian operator K0 = S−S−1.
Its Poisson cohomology is

H p(K0) = 0 ∀ p > 1.

Moreover,

H0(K0) =
{∫

α +
∫

βu
∣
∣
∣ (α, β) ∈ C

2
}

(1.4)

H1(K0) =
{∫

γ
δ

δu

∣
∣
∣ γ ∈ C

}

. (1.5)

The 0-th cohomology group identifies the Casimir functionals of the Poisson bracket
defined by K0. The first cohomology is given by the evolutionary vector fields which
are symmetries of the Hamiltonian structure K0 but are not obtained as Hamiltonian
flows. For the classification of compatible Hamiltonian structures, the important part of
this result is the vanishing of the second and third cohomology: as we will discuss in
Sect. 4, this replicates Getzler’s result that any Hamiltonian structure compatible with
K0 is given by a Miura-type transformation of K0 itself.

The paper is organized as follows: in Sect. 2 we recall the formal calculus of varia-
tions for algebras of difference functions, introduced by Kupershmidt, and we define a
“difference” θ formalism to describe the space of multivector fields, the Poisson bivector
and its associated cohomology. In Sect. 2.5 we specialise to the case of a single depen-
dent variable and of a first order Hamiltonian structure: we compute its normal form
and we prove our main Theorem. In Sect. 4 we demonstrate a few applications of the
main theorem to the classification of local Hamiltonian difference operators, observing
that many of the ones described by De Sole et al. [7] can be reduced to the constant
(−1, 1) order form by a suitable change of coordinates. As a byproduct, we observe
that all the compatible pairs of Hamiltonian operators listed in the classification produce
the Volterra chain hierarchy. In Sect. 5 we generalise some of the results obtained for
the Poisson cohomology to higher order constant Hamiltonian operators, obtaining an
upper bound for the dimension of the cohomology groups. The triviality result for the
compatible deformations of the operators does not extend to higher order operators.

2. Functional Variational Calculus and Deformations in the Difference Case

In this section we revise the formal calculus of variations in the difference–differential
setting as originally laid out by Kupershmidt [13], according to the more modern ex-
position of [6]. Moreover, we extend the so-called θ formalism to the (difference) local
multivector fields. The θ formalism for differential multivector fields was introduced by
Getzler [12]. It is based on the observation that the algebra of multivector fields with its
Schouten–Nijenhuis bracket can be defined in terms of an odd symplectic supermanifold
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[14] and on Soloviev’s definition of the Schouten bracket for a field theory [18]. It proved
itself extremely useful to compute the Poisson cohomology for operators of differential
type [2–4].

We introduce the basic notions of local multivectors, Schouten–Nijenhuis brackets,
and θ formalism in the general � ∈ N component case, which is the original Kupersh-
midt’s setting. We will later specialise to the scalar (namely, � = 1) case.

2.1. Algebra of difference functions. Let (P�,S) the algebra of polynomials over the
field C in the variables ui

n , i ∈ {1, . . . , �}, n ∈ Z, endowed with an automorphism S,
defined bySui

n = Sui
n+1 ∀n.We oftenwrite, following the traditional notation, ui := ui

0.
It satisfies the following relation

S ∂

∂ui
n

= ∂

∂ui
n+1

S, i ∈ {1, . . . , �}, n ∈ Z. (2.1)

Definition 1 ([7]). An algebra of difference functions is a commutative associative uni-
tal algebra A containing P�, endowed with commuting derivations ∂

∂ui
n
as well as an

automorphism S, extending the ones in P�, such that the following two properties hold:

1. ∂ f
∂ui

n
= 0 for all f ∈ A and all but finitely many pairs (i, n);

2. Property (2.1) holds.

Moreover, we denote C = { f ∈ A |S f = f } the subalgebra of constants and
C̄ = { f ∈ A | ∂ f

∂ui
n

= 0 ∀(i, n)} the subalgebra of quasi-constants. Note that a non-

constant quasi-constant is an element ofAwith only an explicit dependence (not through
the variables ui

n) on the lattice variable n.
For the scalar difference functions we will focus on in this article, we will consider

� = 1 and C̄ = C = C.
The elements of the quotient

F = A
(S − 1)A (2.2)

are called local functionals. We denote the projection map from A to F as a formal
integral, which associates to f ∈ A the element F := ∫

f in F . In particular, we have∫ S f = ∫
f ; we will sometime denote the equivalence relation as S f ∼ f .

In the formal calculus of variations for difference functions and functionals, S re-
places ∂x in the usual variational calculus; the main difference is that S is an automor-
phism while ∂x is a derivation of A.

The variational derivative of a local functional F = ∫
f is defined as

δF

δui
= δui F :=

∑

n∈Z
S−n ∂ f

∂ui
n
. (2.3)

From the property (1) in the definition of the algebra of difference functions, this sum
is always finite.

Proposition 1. For any f ∈ A,

δ

δui
(S − 1) f = 0. (2.4)
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Proof. This proposition is a special case of the deeper theorem Ker δ = C̄ + (S − 1)A
(see [7,13], to which we refer for the complete proof). For our purposes, the proposition
follows from the simple computation involving relation (2.1)

δ

δui
(S − 1) f =

∑

n∈Z
S−n ∂

∂ui
n
S f −

∑

n∈Z
S−n ∂ f

∂ui
n

=
∑

n∈Z
S−n+1 ∂ f

∂ui
n−1

−
∑

n∈Z
S−n ∂ f

∂ui
n

=
∑

n′∈Z
S−n′ ∂ f

∂ui
n′

−
∑

n∈Z
S−n ∂ f

∂ui
n

= 0.

(2.5)

�	
From this proposition in particular it follows that the variational derivative of F does
not depend on the choice of the density f .

2.2. Local multivectors. A local p-vector B is a linear p-alternating map from F to
itself of the form

B(I1, . . . , Ip) =
∫

B
i1,...,i p
n1,...,n p Sn1

(
δ I1
δui1

)

· · ·Sn p

(
δ Ip

δui p

)

(2.6)

where B
i1,...,i p
n1,...,n p ∈ A, for arbitrary I1, . . . , Ip ∈ F . We denote the space of local p-

vectors by 	p ⊂ Alt(F p,F).
We now look at examples of multivectors for low p. A 0-vector is a local functional.

A local 1-vector is a linear map

X̂(F) =
∫

Xi δF

δui
,

for Xi ∈ A, i = 1, . . . , �. Indeed, from the following “integration by parts” rule
∫

(Sn f
) (Sm g

) =
∫

f Sm−ng (2.7)

it follows that ∫
Bi

nSn δF

δui
=

∫ (
S−n Bi

n

) δF

δui
:=

∫
Xi δF

δui
. (2.8)

A difference evolutionary vector field is a derivation of the algebra A that commutes
withS and is trivial on C̄. An evolutionary vector field of characteristic {Xi }�i=1, Xi ∈ A,
is of the form

X̄( f ) =
�∑

i=1

∑

n∈Z
Sn

(
Xi

) ∂ f

∂ui
n
. (2.9)

There is a one-to-one correspondance between evolutionary vector fields and local 1-
vectors. Any local 1-vector defines an evolutionary vector field of characteristic X as in
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(2.8). Conversely, for an evolutionary vector field X̄ we have X̄(S f ) = S(X̄( f )). From
this it follows that the map

X̂

(∫
f

)

:=
∫

X̄( f ),

associating a local 1-vector X̂ to any evolutionary vector field X̄ is well defined on local
functionals, since

∫
X̄ ( f + (S − 1)g) =

∫
(
X̄( f ) + (S − 1)X̄(g)

) =
∫

X̄( f ).

Local 2-vector field can be identified with skewsymmetric operators, or brackets.

Definition 2. A local (scalar) difference operator K is an element ofA[S,S−1], namely
a finite sum of the form

K =
N∑

n=M

a(n)Sn,

with a(n) ∈ A, M � N ∈ Z. We call the pair (M, N ) the order of the operator.

Let us consider a difference-operator valuedmatrix K ∈ Mat�(A[S,S−1]). It defines
a bilinear operation, or a bracket, among local functional F, G by

{F, G} :=
∫ �∑

i, j=1

δF

δui
K i j δG

δu j
. (2.10)

We say that the bracket is skewsymmetric if {F, G} = −{G, F}. Moreover, with a slight
abuse of terminology we say that an operator is skewsymmetric if the bracket defined
as in (2.10) is skewsymmetric. Scalar local difference operator with this property (such
as a Hamiltonian one) must be of order (−N , N ) for some N > 0.

We identify a skewsymmetric bracket with a local 2-vector field by direct comparison
with the definition in equation (2.6).

Indeed, let K be a matrix of difference operators K i j = K i j
(n)Sn for i, j = 1, . . . , �

and n ∈ Z. Then the bracket {F, G} defined in (2.10) corresponds to the bivector

B(F, G) =
∫ �∑

i, j=1

∑

m,n∈Z
Bi j

m,nSm
(

δF

δui

)

Sn
(

δG

δu j

)

with Bi j
0,n = K i j

(n) and Bi j
m,n = 0 ∀m �= 0.

We call a difference operator a Hamiltonian operator if the bracket it defines is
skewsymmetric and fulfils the Jacobi identity.

Theproperty of being anHamiltonianoperator is usually expressed in termsofFréchet
derivative—once we have defined the difference analogous of the Fréchet derivative for
a differential operator, the property reads the same as the one given by Dorfman [9].

The notion of multiplicative Poisson vertex algebras has been recently introduced by
De Sole et al. [7] as the algebraic structure underlying differential–difference Hamilto-
nian equations. For our purposes, we regard it as an equivalent definition of a Hamilto-
nian operator. However, it is a convenient framework to perform explicit computations
throughout our paper. To be self-contained, the complete definition and the exact terms
of the equivalence are illustrated in Appendix A.
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2.3. The θ formalism. The so-called θ formalism is an equivalent and computational-
effective way to define local multivector fields in the theory of the formal calculus of
variations and their Schouten bracket. In this section we provide a version tailored on the
difference case, namely when the densities of local functionals are difference functions.

Let Â be the algebra of difference functions in the commutative variables ui
n , n ∈ Z

and of polynomials in the anticommutative variables θi,n , i.e.,

Â := A[{θi,n, i ∈ {1, . . . , �}, n ∈ Z
}]. (2.11)

As for the u’s variables, we often denote θi := θi,0. Â is a graded algebra according to
the super gradation degθ , by setting

degθ ui
n = 0, degθ θi,n = 1. (2.12)

We denote Âp, the homogeneous components of Â with θ -degree p. Clearly Â0 = A.
The automorphism S is extended to Â by

Sθi,n = θi,n+1. (2.13)

Moreover, Ker(S − 1) on Â is C̄.
We denote by F̂ the quotient of Â by the subspace (S − 1)Â, and by the integral

operator
∫
the projection map from Â to F̂ . Since degθ S f = degθ f , F̂ inherits the

supergradation of Â.
Equation (2.4) holds on Â and, similarly to (2.1),

S ∂

∂θi,n
= ∂

∂θi,n+1
S. (2.14)

It follows that the θ variational derivative

δ

δθi
= δθi :=

∑

n∈Z
S−n ∂

∂θi,n
(2.15)

satisfies
δ

δθi
(S − 1) = 0. (2.16)

Hence both variational derivatives (2.4) and (2.15) define maps from F̂ to Â.

Proposition 2. The space of local multi-vectors 	p is isomorphic to F̂ p.

Remark 1. A proof of this Proposition for the differential case is given in [16]. In the
difference case the proof is simpler and it relies on a few theorems and lemmas originally
proved by Kupershmidt [13].

Proof. For p = 0, the isomorphism is trivial, since F̂0 = F = 	0. Let us assume
instead that p � 1. Given B ∈ F̂ p, and arbitrary I1, . . . , Ip ∈ F , let

ι(B)(I1, . . . , Ip) := ∂

∂θi p,n p

· · · ∂

∂θi1,n1
B ·

(

Sn1 δ I1
δui1

)

· · ·
(

Sn p
δ Ip

δui p

)

. (2.17)
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Clearly ι(B) is an alternating map from F̂ p to A. Moreover it satisfies

ι(SB)(I1, . . . , Ip) = S(
ι(B)(I1, . . . , Ip)

) ∼ ι(B)(I1, . . . , Ip). (2.18)

We can then define the map ι̃ from F̂ p to 	p by

ι̃

(∫
B

)

:=
∫

ι(B). (2.19)

Surjectivity of ι̃ is easy to see; indeed the local p-vector (2.6) is the image through ι of

B = 1

p! B
i1,...,i p
n1,...,n pθi1,n1 · · · θi p,n p . (2.20)

The injectivity of ι̃ means that if

ι(B)(I1, . . . , Ip) ∼ 0 ∀ (I1, . . . , Ip), (2.21)

then B ∼ 0. For p = 1 we have the stronger result that ι(B) ∼ 0 implies B = 0. Indeed,
we have ι(Xiθi )(F) = Xiδui F ∼ 0 for any δF ∈ A, where Xi ∈ A. This product is
nondegenerate and it implies Xi = 0 [13, Lemma 17]. For p � 2 we can always choose
a representative B̃ of the form 1

p θiδθi B for the element in F̂ p, which gives

ι(B)(I1, . . . , Ip) ∼ δ I1
δui1

· ι

(
δB

δθi1

)

(I2, . . . , Ip) ∼ 0. (2.22)

Similarly to before, this means that ι(δθi B) = 0, which implies δθi B = 0, hence
B ∼ 0. �	

2.4. The Schouten–Nijenhuis bracket. We define in the difference setting the so-called
Schouten–Nijenhuis bracket for multivector fields. It is a bilinear map

[ , ] : F̂ p × F̂q → F̂ p+q−1 (2.23)

defined as

[P, Q] =
∫ N∑

i=1

(
δP

δθi

δQ

δui
+ (−1)p δP

δui

δQ

δθi

)

. (2.24)

Proposition 3. The (difference) Schouten–Nijenhuis bracket (2.24) satisfies the graded
symmetry

[P, Q] = (−1)pq [Q, P] (2.25)

and the graded Jacobi identity

(−1)pr [[P, Q], R] + (−1)qp[[Q, R], P] + (−1)rq [[R, P], Q] = 0 (2.26)

for arbitrary P ∈ F̂ p, Q ∈ F̂q and r ∈ F̂r . Moreover, it extends the commutator of
evolutionary vector fields for the case p = q = 1.
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Proof. Let us first prove that the Schouten bracket reduces to the usual commutator of
vector fields in the case p = q = 1. Two elements of F̂1 are represented by Xiθi and
Y jθ j with Xi , Y j ∈ A. Their Schouten bracket then reads

[X, Y ] =
∫ (

Xi (δY jθ j )

δui
− Y i (δX jθ j )

δui

)

=

=
∫ ((

Sn Xi
) ∂Y j

∂ui
n

−
(
SnY i

) ∂ X j

∂ui
n

)

θ j , (2.27)

corresponding to the commutator of two evolutionary vector fields. Indeed, we recall
that

X̂

(

Ŷ

(∫
f

))

=
∫

Xi δ

δui

(∫
Y j δ f

δu j

)

=
∫

Sm Xi ∂

∂ui
m

(

SnY j ∂ f

∂u j
n

)

. (2.28)

Taking the difference with the expression with exchanged X̂ and Ŷ we obtain
∫

Sm Xi ∂

∂ui
m

(
SnY j

) ∂ f

∂u j
n

− (X ↔ Y )

=
∫ (

Sm−n Xi
) ∂Y j

∂ui
m−n

S−n ∂ f

∂u j
n

− (X ↔ Y )

=
∫ ((

Sn Xi
) ∂Y j

∂ui
n

−
(
SnY i

) ∂ X j

∂ui
n

)
δ f

δu j
. (2.29)

For P ∈ F̂ p, Q ∈ F̂q , the skewsymmetry follows from the commutation rules of
elements of Â, namely P Q = (−1)degθ P degθ Q Q P and from degθ δθ = −1. We have

[Q, P] =
∫ N∑

i=1

(

(−1)p(q−1) δP

δui

δQ

δθi
+ (−1)q+(p−1)q δP

δθi

δQ

δui

)

= (−1)pq [P, Q].
(2.30)

The Jacobi identity is proved by a long but straightforward direct computation, in which
the following properties are used:

∂2

∂ui
m∂u j

n

= ∂2

∂u j
n∂ui

m

,
∂2

∂ui
m∂θ j,n

= ∂2

∂θ j,n∂ui
m

,
∂2

∂θi,m∂θ j,n
= − ∂2

∂θ j,n∂θi,m
.

(2.31)
�	

Definition 3. A bivector P ∈ F̂2 is said to be a Poisson structure if and only if [P, P] =
0. Such a condition is sometimes called the Schouten identity or the vanishing of the
Schouten torsion.

Proposition 4. Let P = 1
2

∫
Pi j

n θiθ j,n ∈ F̂2 be a Poisson structure. Then the operator

K i j :=
(

δP

δθi

)∣
∣
∣
∣
θ j,n→Sn

(2.32)
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is a Hamiltonian operator. Conversely, given a Hamiltonian difference operator K i j ,
then the bivector

P = 1

2

∫
θi K i jθ j (2.33)

is a Poisson structure. With the notation in (2.33) we mean that the operator K i j is
applied to the variable θ j .

Proof. The equivalence between Hamiltonian operators and multiplicative Poisson ver-
tex algebras (PVA) has been proved in [7]. The precise statement and some useful
formulas are presented in Appendix A. In particular, any Hamiltonian difference oper-
ator defines a multiplicative PVA on the space of difference functions, defined on the
generators by

{ui
λu j } = K ji

∣
∣
∣S→λ

, (2.34)

In particular, the bracket (2.34) is skewsymmetric and satisfies the PVA-Jacobi identity.
Wefirst prove that the skewsymmetry is automatically granted by the definition (2.32)

and that (2.33) is consistent with the skewsymmetry of K . Let P = ∫
Pi j

n θiθ j,n . Through

formulae (2.32) and (2.34) it defines a multiplicative λ bracket {u j
λui } = Pi j

n λn . The
skewsymmetry for this bracket (see Appendix A.1, property (4)) reads

S−n P ji
n λ−n = −Pi j

n λn . (2.35)

Moreover, we have
∫

Pi j
n θiθ j,n =

∫ (
S−n Pi j

n

)
θi,−nθ j = −

∫ (
S−n P ji

n

)
θiθ j,−n . (2.36)

Applying the map (2.32) to the first and the third expressions of (2.36) we obtain (2.35).
A similar computation shows that if the difference operator K in (2.33) is not skewsym-
metric, only its skewsymmetric part contributes to the definition of P .

We then prove that the condition [P, P] = 0 is equivalent the PVA-Jacobi identity
by a direct computation. The skewsymmetry property for a multiplicative λ-bracket
imposes, in general, that

{ui
λu j } = Pi j

n λn − S−n P ji
n λ−n,

which, together with (A.4), gives an explicit form for the PVA-Jacobi identity of the
general form ∑

m,n

Ai jk
m,n(λmμn − λnμm) = 0, (2.37)

holding true ∀ i, j, k ∈ {1, . . . , �}, which is fulfilled if all the coefficients Ai jk
m,n vanish

identically.
On the other hand, the expression for [P, P] reads

2
∫

δP

δθk

δP

δuk
= 1

2

∫ (

Pkl
m

(

S−n ∂ Pi j
r

∂uk
n

)

θl,mθi,−nθ j,r−n

−
(
S−m Plk

m

)
(

S−n ∂ Pi j
r

∂uk
n

)

θl,−mθ j,−nθi,r−n

)

. (2.38)
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Applying the operatorN = 1/3
∑

k θkδθk (introduced in the differential θ formalism in
[12]) we obtain a normal form of the aforementioned expression, of the form

∑

m,n

Ai jk
m,nθkθi,mθ j,n,

with the coefficients Ai jk
m,n identical to the ones of (2.37). The explicit computations for

the case � = 1 are presented in Appendix A.2. �	

2.5. The Poisson cohomology. A Poisson bivector defines, together with the Schouten–
Nijenhuis bracket, a θ -degree 1 differential dP := [P, ·] on the space F̂ . It is obvious
from the definition of Schouten bracket that dP : F̂ p → F̂ p+1. Moreover, by the graded
Jacobi identity (2.26) we have

d2
P X = [P, [P, X ]] = −[P, [P, X ]] − [[P, P], X ] = 0. (2.39)

We can then define the cochain complex

0 → F̂0 = F dP−→ F̂1 dP−→ F̂2 → · · ·
whose cohomology is called the Poisson (or Poisson–Lichnerowicz) cohomology. The
Poisson cohomology is a graded space according to the θ -degree p of its elements
(correspoding to local p-vector fields).

H(dP , F̂) =
⊕

p�0

H p(dP , F̂) = Ker dP : F̂ p → F̂ p+1

Im dP : F̂ p−1 → F̂ p
. (2.40)

The interpretation of the lower cohomology groups is similar to the one for the Poisson
cohomology of finite dimensional manifolds and is well-known. The elements of H0

are the Casimirs functionals of the bracket defined by P—elements F whose variational
derivative δu F is in the kernel of the Hamiltonian operator.

The elements of H1 are evolutionary vector fields corresponding to symmetries of
the bracket which are not Hamiltonian.

The cohomology groups H2 and H3 play a central role in the theory of deformation
of the Hamiltonian structures, where the first one classifies their infinitesimal compat-
ible deformations and the second one the obstructions to extend a deformation from
infinitesimal to finite.

Given a Poisson bivector P0, an infinitesimal compatible deformation of P0 is a
bivector P1 such that [P0 + εP1, P0 + εP1] = O(ε2). The compatibility condition is
[P0, P1] = 0 and, hence, equivalent to dP0 P1 = 0. If P1 is itself a Poisson bivector,
namely [P1, P1] = 0, than the deformation is said to be finite and, in particular, P0
and P1 form a biHamiltonian pair. We say that two bivectors P and Q, not necessarily
both of Poisson type, are compatible if [P, Q] = 0; more precisely, we say that Q is a
compatible deformation of P if P is a Poisson bivector. We use the same terminology
for the operators to which the bivectors are equivalent and the brackets they define.

We call an infinitesimal deformation trivial when P1 can be obtained from P0 by
the action of a vector field; this correspond to obtaining a new multiplicative λ bracket
{uλu}′ by introducing new coordinates v = u + ε f (u, u1, . . . , un), taking the order ε

term in {vλv} and expressing it in terms of the new variables. Deformed bracket of this
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form are always compatible, since they correspond to P1 = dP X for an evolutionary
vector field X (of characteristic f ). Hence, the second cohomology group H2 classifies
the nontrivial infinitesimal compatible deformations of a given Poisson bivector.

If P0 + εP1 is not a Poisson bivector, the deformation may be extended to the order
ε2 by adding a further bivector P2, such that

[P0 + εP1 + ε2P2, P0 + εP1 + ε2P2] = ε2 ([P1, P1] + 2[P0, P2]) + O(ε3).

Here [P1, P1], when not vanishing, is a three-vector that—as can be shown using the
Jacobi identity for the Schouten bracket—lies in the kernel of dP0 . To let the ε2 term
in the expansion vanish, there must exist P2 such that −2dP0 P2 is equal to [P1, P1].
Such a bivector P2 always exists if the third cohomology group H3 is trivial, i.e. all
the 3-vectors in the kernel of dP0 are of the form dP0 B for a bivector B. Note that the
converse is not necessarily true, namely that there may exist a bivector P2 as above, for
a particular infinitesimal deformation P1, even in the case of nontrivial H3 (so in the
presence of obstructions to the extension of generic deformations).

In this paper we prove, in particular, that the second and third cohomology group for a
scalar, order (−1, 1), Hamiltonian difference operator are trivial—hence that there exist a
change of coordinates, or a sequence of change of coordinates, for which the deformation
vanishes. Moreover, we explicitly compute the zeroeth and the first cohomology groups.

3. Poisson Cohomology for a Scalar Hamiltonian Operator

Let us consider anHamiltonian operator of order (−1, 1). As proved in [7], the skewsym-
metry condition implies that it is of the form

K = f (u, u1, u−1, . . .)S − S−1 f (u, u1, u−1, . . .), (3.1)

while from the Jacobi identity it follows that f = f (u, u1) and

(S f )
∂ f

∂u1
= f S

(
∂ f

∂u

)

.

The condition is equivalent to

∂ f

∂u1

/
f = S

(
∂ f

∂u

/
f

)

,

for which we note that the LHS depends on u and u1, while the RHS depends on u1 and
u2. This means that

∂

∂u1
log f = a(u1) = S ∂

∂u
log f = Sa(u),

namely log f = A(u) + A(u1) + c and

f = g(u)g(u1)

for some function g of single variable. If g(u) is not vanishing, the change of coordinates
v = ∫ u 1

g(s)ds brings the difference operator to the normal form

K0 = S − S−1. (3.2)
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This can be verified by a direct computation using the PVA formalism with the formula
(A.3). The generic (−1, 1) order Hamiltonian operator corresponds to the λ bracket
{uλu} = g(u)g(u1)λ − g(u−1)g(u)λ−1. We have

{vλv} =
{∫ u 1

g(s)
dsλ

∫ u 1

g(s)
ds

}

= 1

g(u)
g(u)g(u1)

(

S 1

g(u)

)

λ − 1

g(u)
g(u−1)g(u)

(

S−1 1

g(u)

)

λ−1

= λ − λ−1. (3.3)

According to the identification (2.33), the corresponding Poisson bivector in F̂ is

P =
∫

θθ1. (3.4)

The first basic building block of our computation is observing the exactness of the
short sequence

0 �� Â/C S−1 �� Â
∫

�� F̂ �� 0. (3.5)

This is obvious because the kernel of (S − 1) is indeed the subalgebra of constants, and
F̂ is by definition the quotient space Â/(S − 1)Â. From now on we will deal with the
explicit scalar case (3.4), for which � = 1 and C = C.

To compute the cohomology H(F̂, dP ) we introduce an auxiliary complex (Â, DP )

such that the following diagram commutes:

0 �� A
∫

��

DP �� Â1

∫

��

DP �� Â2

∫

��

DP �� · · ·

0 �� F dP �� F̂1 dP �� F̂2 dP �� · · ·

(3.6)

Wewill then exploit the long exact sequence in cohomology induced by (3.5), namely

· · · �� H p(Â/C) �� H p(Â) �� H p(F̂) �� H p+1(Â/C) �� · · · ,

(3.7)
to compute the cohomology H(F̂, dP ).

3.1. The differential on Â. Given an element P ∈ F̂2 we define the following differen-
tial operator on Â

DP :=
∑

n

((

Sn δP

δθ

)
∂

∂un
+

(

Sn δP

δu

)
∂

∂θn

)

. (3.8)

Since [DP ,S] = 0, the operator DP descends to an operator on F̂ which is given by
the adjoint action adP = [P, ·] of P on F̂ via the Schouten–Nijenhuis bracket, i.e.,

adP

(∫
Q

)

=
∫

DP (Q), (3.9)
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for Q ∈ Â. If P is a Poisson bivector, adP = dP and d2
P = 0.

For P as in (3.4) we have

DP =
∑

n

(θn+1 − θn−1)
∂

∂un
(3.10)

for which we have D2
P = 0. Indeed

D2
P f =

∑

n,m

(θm+1 − θm−1) (θn+1 − θn−1)
∂2 f

∂um∂un
, (3.11)

which is the product of a skewsymmetric (the product of θ ’s) and a symmetric (the
second derivative) terms in (n, m). Finally, a simple computation shows that DP , by the
map (3.9), gives the differential dP Q = ∫

δθ Pδu Q.

Remark 2. The operator DP for P = ∫
θθ1 can be also obtained as the prolongation of

the vector field with characteristic θ1 − θ−1.

From DP : Âp → Âp+1 and D2
P = 0 it follows that we can introduce the Poisson–

Lichnerowicz complex

0 �� Â0 = A DP �� Â1 DP �� Â2 DP �� Â3 DP �� · · · . (3.12)

Its cohomology is, by the standard definition,

H(DP , Â) =
⊕

p�0

H p(DP , Â) = Ker DP : Âp → Âp+1

Im DP : Âp−1 → Âp
. (3.13)

Lemma 1. H(DP , Â) = C[θ, θ1]. Since θ and θ1 are Grassmann variables, this means
in particular that the cohomology is 4-dimensional and it is generated as a vector space
by 〈1, θ, θ1, θθ1〉.
Proof. The basic idea is that we can regard DP = (θn+1 − θn−1)∂un as a De Rham-type
differential on the space Â, identifying (θn+1−θn−1)with dun . On a topologically trivial
space like Â, the De Rham cohomology is concentrated in the constants in H0, namely
elements of C[{θn}] without terms in the ideal generated by (θn − θn−2) for all n. In
fact, any element containing a θn̄ variable is in the same cohomology class of the one
with θn̄−2, since we have—possibily with a sign given by the order of permutation of θ

variables—

θn1θn2θn̄ · · · θn p = θn1θn2θn̄−2 . . . θn p + (θn̄ − θn̄−2)θn1θn2 · · · θn p

= θn1θn2θn̄−2 . . . θn p + DP
(
un̄−1θn1θn2 · · · θn p

)
. (3.14)

This observation leads us to the conclusion that representative elements in H(DP , Â)

depend only on even θ2k and odd θ2k+1, for which we pick θ0 = θ and θ1.
More formally, we introduce the family of homotopy operators

hn = 1

2

⎛

⎝
∑

r�0

∂

∂θn+2r+1
−

∑

r�0

∂

∂θn−2r−1

⎞

⎠
∫

dun . (3.15)
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Such a definition is motivated by the observation that

1

2

⎛

⎝
∑

r�0

∂

∂θn+2r+1
−

∑

r�0

∂

∂θn−2r−1

⎞

⎠ (θm+1 − θm−1) = δm,n . (3.16)

A direct computation, in which (3.16) plays the central role, shows that

hn DP + DP hn = 1 − π |un=∅ π |θn+1=θn−1 , (3.17)

where by π |un=∅ we denote the projection which sets to 0 any element of Â with a
dependency on un and by π |θn+1=θn−1 the projection which replaces any occurrence of
θn+1 with θn−1 (we can use the projection the other way round, replacing θn−1 with θn+1

if n < 0). By (3.17), for any element f ∈ Ker DP we have f = f̃ |θn+1=θn−1 + DP g,
where f̃ is the element f in Â after removing all the dependency on un and g ∈ Â.
We can therefore pick as representatives for the cohomology classes in H(DP , Â) the
polynomials in the variables θ and θ1 alone. The property θ2n = 0, however, restricts the
ring of such polynomials to a simple four dimensional vector space. �	

3.2. The cohomology H(dP , F̂). The main result of this paper is a Theorem, already
stated in the Introduction, completely determining the Poisson cohomology of theHamil-
tonian operator K0(S) = S − S−1, namely H(dP , F̂) where with dP we denote the
differential defined by the bivector P as in (3.4). We have

Theorem 1. The Poisson cohomology defined by P is finite dimensional. We have

H p(dP , F̂) = 0 ∀ p > 1.

Moreover,

H0(dP , F̂) =
{∫

α +
∫

β u
∣
∣
∣ (α, β) ∈ C

2
}

(3.18)

H1(dP , F̂) =
{∫

γ θ

∣
∣
∣ γ ∈ C

}

. (3.19)

The elements of the first cohomology group correspond to the evolutionary vector fields
with characteristic γ ∈ R.

Lemma 1 states that H p(Â) = 0 for p > 2. This fact alone, given the long exact
sequence (3.7), allows us to set the first conclusion for H(F̂), namely

H p(dP , F̂) = 0 ∀ p > 2.

In particular, H3(F̂) = 0, which means that all the infinitesimal deformations (both
trivial and nontrivial) can be extended without obstructions. H0, H1, and H2 require a
more careful examination which is carried out in the following three lemmas. Together
with H p(dP , F̂) = 0 for p > 2 they conclude the proofs of Theorem 1.

Lemma 2. H0(dP , F̂) = 〈∫ 1,
∫

u〉
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Proof. For H0, the long exact sequence in cohomology reads

H0(Â/C) �� H0(Â)

∫

�� H0(F̂)
b �� H1(Â/C)

S−1 �� H1(Â) �� . . . .
(3.20)

We first notice that for p > 0 we have (Â/C)p ∼= Âp, and H0(Â/C) = 0. Therefore,
H0(F̂) ∼= H0(Â) ⊕ N , where

N ∼= Im b ∼= Ker(S − 1) : H1(Â) → H1(Â).

We can easily compute the induced map S − 1 on H1(Â), since in it Sθ = θ1 and
Sθ1 = θ . We have

(S − 1)(αθ + βθ1) = (α − β)θ1 − (α − β)θ,

from which N = 〈θ + θ1〉. We can therefore state that H0(dP , F̂) ∼= C
2. Moreover, we

can identify representatives in the cohomology class: on one hand, we have the inclusion
of H0(Â) in H0(F̂) by the integral map, so

∫
α ∈ H0(F̂) for all α ∈ C. On the other

hand, we should identify the map b, such that b−1N ⊂ H0(F̂). Let

b−1 := 1

2

∫
u

(
∂

∂θ
+

∂

∂θ1

)

for which we have b−1N = ∫
βu, β ∈ C. We immediately observe that dPb

−1N =
β

∫
(θ1 − θ−1) = 0, so we have found the remaining 1-dimensional subspace

in H0(F̂). �	
Lemma 3. H1(dP , F̂) = 〈∫ θ〉
Proof. The relevant section of the long exact sequence is

H1(Â)
S−1 �� H1(Â)

∫

�� H1(F̂)
b �� H2(Â)

S−1 �� H2(Â) �� . . . .
(3.21)

The crucial observation is that Ker(S −1) on H2(Â) is 0 and (S −1)H2(Â) ∼= H2(Â),
which means that the Bockstein homomorphism b is the zero map. Hence H1(F̂) ∼=∫

H1(Â) and we immediately see that

∫
(αθ + βθ1) = (α + β)

∫
θ.

�	
We have already discussed in Sect. 2.2 that the element

∫
θ ∈ F̂1 corresponds to the

evolutionary vector field X̂(F) = ∫
δu F .

Lemma 4. H2(dP , F̂) = 0.
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Proof. The vanishing of the higher groups of H(Â) implies that the long exact sequence
terminates as

0 �� H2(Â)
S−1 �� H2(Â)

∫

�� H2(F̂) �� 0, (3.22)

where the first arrow is determined by the previous remark that Ker(S − 1) vanishes on
H2(Â). Finally, the short exact sequence implies that

H2(F̂) = H2(Â)

(S − 1)H2(Â)

∼= H2(Â)

H2(Â)

∼= 0.

�	
The vanishing of the second cohomology group implies that all the infinitesimal defor-
mations P̃ of the bivector P are trivial, namely that there exists an evolutionary vector
field X such that P̃ = dP X .

4. Applications: Compatible Low Order Scalar Hamiltonian Operators

In Theorem 1, the main result of our paper, we obtained the Poisson cohomology of the
operator K0 = S −S−1. We are going to apply it to compatible Hamiltonian operators,
that form a biHamiltonian pair with K0.

In their recent paper [7], De Sole et al. present a classification of local difference
Hamiltonian structures, in terms of multiplicative Poisson vertex algebras, complete up
to order (−5, 5). In this Section we discuss, in light of our theorem, the compatible pairs
in their classification, that we present in Appendix A.3.

We denote the Hamiltonian operators corresponding to the bracket {uλu}k,g in (A.17)
by Kk,g , the one corresponding to (A.18) as K̃2,g , the one given by (A.19) as K̃3,g . The
operator given by (A.20) will be denoted as Qg and the one given by (A.21) by Q̃g .

We have proved in Section 3 that the normal form for a Hamiltonian operator of order
(−1, 1) is K0. Indeed, K0 can be obtained by the change of coordinates

u �→ v =
∫ u 1

g(s)
ds,

as explicitly shown in (3.3).
The same change of coordinates can be applied to any of the bi-Hamiltonian pairs

(K1,g, Kg), (K1,g, K̃2,g), (K1,g, K̃3,g), (K̃2,g, Qg), and (K1,g + K2,g, Q̃g) to get the
pairs defined by the operators K0 = K1,1, K1, K̃2,1, K̃3,1, Q1, and Q̃1. The bracket
corresponding to each Hamiltonian operator is obtained computing

{vλv} =
{(∫ u 1

g(s)
ds

)

λ

(∫ u 1

g(s)
ds

)}

and expressing the result using the new coordinate v. The computation is performed
exploiting the so-calledmaster formula (A.3); we demonstrate it for K̃2,g in Appendix B.

Theorem 1 states that there exist evolutionary vector fields whose action maps each
of the operators compatible with K0 (namely, K1, K̃2,1, and K̃3,1) to K0.
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4.1. Constant compatible Hamiltonian operators. Let us consider the operator K1 =∑5
k=2 ck(Sk −S−k)with arbitrary constants c2, . . . , c5. The compatibility holds true for

any choice of the constants; hence each of the homogeneous summands is compatible
with K0. The homogeneous term of order (−k, k) is Kk,1.

We denote P0 and P1,k , respectively, the Poisson bivectors corresponding to the oper-
ators K0 and Kk,1. From the vanishing of the Poisson cohomology of P0, it follows that
there exists a vector field X (k) such that P1,k = [P0, X (k)]. Such vector field generates the
infinitesimal change of coordinates under which K0 becomes Kk,1. In terms of λ brack-
ets for multiplicative Poisson vertex algebras, we look for a function f (k)(u, u1, u2, . . .)

such that
{(

u + ε f (k)
)

λ

(
u + ε f (k)

)}

0
= {uλu}0 + ε{uλu}k,1 + O(ε2), (4.1)

where we denote {uλu}0 the λ bracket called {uλu}1,1 in Appendix A.3. The term of
order ε in (4.1) is

{ f (k)
λ u}0 + {u λ f (k)}0 = {uλu}k,1

from which we obtain, using the master formula (A.3), the set of equations

∂ f (k)

∂un−1
− ∂ f (k)

∂un+1
= δk,n . (4.2)

Its solution is

f (2k) =
k−1∑

n=0

u2n+1, f (2k+1) =
k−1∑

n=0

u2n . (4.3)

The vector field X (k) producing the infinitesimal change of coordinates u �→ u + ε f (k)

is − ∫
f (k)θ .

From the Jacobi identity of the Schouten bracket, [Pk′ , X (k)] is compatible with P0
for any k, k′. We have

0 =[[Pk′, X (k)], P0] + [[P0, Pk′ ], X (k)] + [[X (k), P0], Pk′ ]
=[[Pk′, X (k)], P0] + [Pk, Pk′ ] = [[Pk′, X (k)], P0]. (4.4)

This means that vector fields X̃ (k) can always be found in such a way that there exists a
change of coordinates φ = eadX , X = ∑

X̃ (k), connecting a Hamiltonian operator K1

with the normal form K0. Note that X̃ (k) will be some multiple of X (k), with coefficient
depending on ck .

4.2. N = 2 compatible operators and the bi-Hamiltonian structure of the Volterra chain.
We consider the well-known Volterra chain, which is the evolutionary differential–
difference equation

∂u

∂t
= u(u1 − u−1). (4.5)
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It is well known (see, for instance, [6]) that the Volterra chain is an integrable equation
admitting a biHamiltonian formulation. Indeed, one can write (4.5) with respect to two
compatible Hamiltonian operators

K1,u = uu1S − u−1uS−1, (4.6)

K̃2,u = uu1u2S2 − uu−1u−2S−2 + uu1 (u + u1)S − uu−1 (u + u−1)S−1 (4.7)

and the two Hamiltonian functionals

H1 =
∫

u H0 = 1

2

∫
log u (4.8)

according to ∂t u = K1,uδH1 = K̃2,uδH0.
The operator K1,u is of order (−1, 1), so there exist a coordinate change of the form

v = log u for which it takes the constant form K0 = S − S−1, corresponding to the
multiplicative λ bracket {vλv}1 = λ − λ−1.

The same change of coordinates for K̃2,u gives

{vλv}2 = u1λ
2 + (u + u1)λ − (u + u−1)λ

−1 − u−1λ
−2

= ev1λ2 +
(
ev + ev1

)
λ − (

ev + ev−1
)
λ−1 − ev−1λ−2, (4.9)

namely the bracket for K̃2,1. The compatibility of K0 and K̃2,1 can be explicitly verified
and it is indeed case (2) of the classification of the compatible pairs for g(u) = 1. The
Poisson bivector corresponding to K̃2,1 is

P2 = 1

2

∫
(
ev1θθ2 +

(
ev + ev1

)
θθ1

)

The compatibility of the twoHamiltonian operators is equivalent to dP0 P2 = 0. From
Theorem 1 we conclude that there must exist an evolutionary vector field X such that
P2 = [P0, X ], or, equivalently, that exist f (v, v1, . . .) as in (4.1) such that

{ fλv}0 + {vλ f }0 = {vλv}2 (4.10)

The evolutionary vector field X = − ∫
f θ is

X = −
∫

(
ev + ev1

)
θ.

This can easily be verified computing [P0, X ]:

[P0, X ] =
∫ (

δP0

δθ

δX

δv

)

= 1

2

∫
(θ−1 − θ1) evθ +

1

2

∫
(θ−1 − θ1) evθ−1

= 1

2

∫
(
evθθ1 + evθ−1θ + evθ−1θ1

) = 1

2

∫
((

ev + ev1
)
θθ1 + ev1θθ2

)
.

(4.11)
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4.3. N = 3 compatible operators. The (−3, 3) order Hamiltonian operator K̃3,1

K̃3,1 = eu1+iu2S3 + i
(

eu+iu1 − eu1+iu2
)
S2 + eu+iu1S

−eu−1+iuS−1 − i
(

eu−2+iu−1 − eu−1+iu
)
S−2 − eu−2+iu−1S−3 (4.12)

is compatible with K0, according to the classification of compatible Hamiltonian pairs
(case (3)). The vector field X = − ∫

f θ mapping the bivector P0 into the one associated
with K̃3,1 is the solution of

∂ f

∂u
+ S

(
∂ f

∂u

)

= eu+iu1 + eu1+iu2 ,
∂ f

∂u1
= i

(
eu+iu1 − eu1+iu2

)
,

∂ f

∂u2
= eu1+iu2 ,

∂ f

∂un
= 0 n > 2.

The system is easy to solve:
f = eu+iu1 − ieu1+iu2 . (4.13)

The integrable hierarchy generated by the biHamiltonian pair (K0, K̃3,1) is equivalent
to a stretched version of the Volterra chain. We pick H−1 = ∫

u a Casimir of K0.
Introducing the new variable w = u + iu1 we have

∂u

∂t
= K̃3,1δH−1 = (1 − i)ew1 + (1 + i)ew − (1 − i)ew−1 − (1 + i)ew−2 , (4.14)

namely
∂w

∂t
= (1 + i)

(
ew2 − ew−2

)
. (4.15)

The change of coordinates ew �→ v, (1 + i)t �→ τ , finally, gives the equation

∂v

∂τ
= v(v2 − v−2), (4.16)

which is the Volterra chain equation (4.5) with a rescaled independent variable.

Remark 3. The third order Hamiltonian operator of complementary type is not in the
Volterra hierarchy generated by the biHamiltonian pair of the first and second order ones.
We have observed that K̃2,u is the second Hamiltonian structure of the Volterra chain,
while K1,u is the first one. It is known that the compatibility of K1,u and K̃2,u implies the
existence of the recursion operator R = K̃2,u K −1

1,u ; such operator is nonlocal, i.e. it is not
a polynomial in S and S−1, and hence in principle the higher Hamiltonian structures in
the hierarchy Km = Rm−1K1 are not local. The explicit form of the recursion operator
is

R = uS + u + u1 + uS−1 + u(u1 − u−1)(S − 1)−1 1

u
.

On the other hand, in the same coordinate system we have

K̃3,u = uu1ui
2u3S3 − u−3u−2ui−1uS−3

+ i
(

u2ui
1u2 − uu1u1+i

2

)
S2 − i

(
u2−2ui−1u − u−2u−1u1+i

)
S−2

+ u2u1+i
1 S − u2−1u1+iS−1, (4.17)

which is obviously different from RK2.
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4.4. Compatible N = 2 and N = 4 order operators. The (−2, 2) order Hamiltonian
operator K̃2,1 is compatible with the (−4, 4) order operator Q1

Q1 = eu1−u2+u3S4 − S−4eu1−u2+u3 +
(
eu−u1+u2 + eu1−u2+u3

)S3 +

−S−3 (
eu−u1+u2 + eu1−u2+u3

)
+ eu−u1+u2S2 − S−2eu−u1+u2 . (4.18)

We have already shown that K̃2,1 is compatible with K0, so there exist a change of
coordinates u = F(v) such that the operator K̃2,g in the new coordinates is of the
form K0. Performing the same change of coordinates on Q1 we then find a compatible
Hamiltonian pair.

Given a change of coordinates v = F(u, u1, . . .), the transformation law for differ-
ence operators is

F∗K |u F†∗ = K ′|F(u), (4.19)

where F∗ is the Fréchet derivative of the change of coordinates and F†∗ is its formal
adjoint

F∗ =
∑

n∈Z

∂ F

∂un
Sn F†∗ =

∑

n∈Z
S−n ∂ F

∂un

We observe that, for K = K0 and the change of coordinates

v = F(u, u1) = − log(u) − log(u1),

the Fréchet derivative and its adjoint are

F∗ = −1

u
− 1

u 1
S F†∗ = −1

u
− 1

u
S−1,

which gives the transformed operator

K ′ = 1

u1u2
S2 +

(
1

uu1
+

1

u1u2

)

S − S−1
(

1

uu1
+

1

u1u2

)

− S−2 1

u1u2
. (4.20)

It is now easy to see that, in the new coordinates, we can write K ′ as

K ′|v = ev1S2 +
(
ev + ev1

)S − S−1 (
ev + ev1

) − S−2ev1 = K̃2,1|v.

The same change of coordinates u = F−1(v) transforming K̃2,1 into K0 can be
applied to Q1 to find the corresponding compatible operator. However, it is easier not to
invert F and to look instead for the preimage of the transformed operator.We have found
that the change of coordinates v = F(u) raises the order of the difference operator from
(−1, 1) to (−2, 2). For this reason, the ansatz for the unknown operator of which Q1 is
the transformed under F is the (−3, 3) order operator

Q′ = AS3 + BS2 + CS − S−1C − S−2B − S−3A,

with A, B and C in A. We equate F∗Q′F†∗ to Q1|F(u) to find the coefficients A, B and
C of Q′.
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We have

Q1|v = ev1−v2+v3S4 +
(
ev−v1+v2 + ev1−v2+v3

)S3 + ev−v1+v2S2

− S−2ev−v1+v2 − S−3 (
ev−v1+v2 + ev1−v2+v3

) − S−4ev1−v2+v3 , (4.21)

Q1|F(u) = 1

u1u4
S4 +

(
1

uu3
+

1

u1u4

)

S3 +
1

uu3
S2

− S−2 1

uu3
− S−3

(
1

uu3
+

1

u1u4

)

− S−4 1

u1u4
. (4.22)

Comparing the coefficients of S4, S3, S2 and S in the two sides of (4.19) we find

A = 1 B = 0 C = 0

which gives us

Q′ = S3 − S−3 = K3,1.

4.5. Compatible N = 2 and N = 5 order operators. The non-homogeneous (−2, 2)
order operator K1,1 + K2,1 = S2 +S1 −S−1 −S−2 is compatible with the (−5, 5) order
operator Q̃1

Q̃1 = eεu2+u3S5 −
(
εeεu1+u2 + ε−1eεu2+u3

)
S4+

+
(
ε−1eεu+u1 + eεu1+u2 + εeεu2+u3

)
S3 −

(
εeεu+u1 + ε−1eεu1+u2

)
S2

+ eεu+u1S − S−1eεu+u1 + S−2
(
εeεu+u1 + ε−1eεu1+u2

)

− S−3
(
ε−1eεu+u1 + eεu1+u2 + εeεu2+u3

)

+ S−4
(
εeεu1+u2 + ε−1eεu2+u3

)
− S−5eεu2+u3 , (4.23)

where we denote by ε a primitive 3-rd root of unity.
Choosing H−1 = ∫

u theCasimir of thefirst bracket, and introducing the newvariable
v = εu + u1 we have

∂u

∂t
= Q̃1δH−1 =

(
1 − ε−1 + ε

)
ev2 + 2ev1 +

(
1 + ε−1 − ε

)
ev (4.24)

−
(
1 − ε−1 + ε

)
ev−1 − 2ev−2 −

(
1 + ε−1 − ε

)
ev−3 ,

namely
∂v

∂t
= −2ε−1 (

ev3 − ev−3
)
. (4.25)

Finally, the change of coordinates ev �→ w, −2εt �→ τ gives us

∂w

∂τ
= εw(w3 − w−3), (4.26)

which is yet another Volterra chain equation with rescaled variables, see for instance
(4.16).
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The same change of coordinates v(u) = εu + u1 brings, according to the transfor-
mation law (4.19), the operator K1,1 + K2,2 to

K (ε,3)
0 := ε(S3 − S−3) = εK3,1 (4.27)

and the Hamiltonian operator Q̃1 to

K̃ (ε,3)
2,1 = εK̃ (3)

2,1 := ε
(

ev3S6 +
(
ev3 + ev

)S3 − S−3 (
ev3 + ev

) − S−6ev3
)

, (4.28)

which are a rescaled and3-stretched (namely, the independent variable is rescaled accord-
ing to n �→ 3n) version of the biHamiltonian pair of Volterra equation when g(u) = 1,
previously discussed in Sect. 4.2.

Remark 4. The rescaling of the independent variable that from a Hamiltonian operator
K produces a k-stretched operator K (k) by n �→ k n cannot, in general, be obtained
by a change of dependent variables as the ones which existence is guaranteed by the
vanishing of the second and third Poisson cohomology groups. It is possible for the case
we are considering, because K (3)

1,1 is compatible with K0 (we have dropped the further
rescaling by ε). From Theorem 1 it follows that there exists an evolutionary vector field
such that K (3)

1,1 = [X, K0], and an easy computation shows that such vector field is

X =
∫ (

v2 − v

2

)
θ. (4.29)

However, K̃ (3)
2,1 is neither compatible with K0 nor with K̃2,1, hence Theorem 1 does not

provide any further insight into it.

5. The Poisson Cohomology for Stretched Hamiltonian Operators

Given a Hamiltonian operator of order (−N , N ) of the form

K (S) =
N∑

n=−N

a(n)(u, u1, u−1, u2, u−2, . . . , um, u−m, . . .)Sn, (5.1)

we define its k-stretched version by rescaling the underlying lattice variable by a factor
k, namely

K (k)(S) :=
N∑

n=−N

a(n)(u, uk, u−k, u2k, u−2k, . . . , umk, u−mk, . . .)Snk . (5.2)

The computation of the Poisson cohomology for the k-stretched K (k)
0 = Sk − S−k

follows the lines of the proof of Theorem 1, but we obtain an essentially different result.
The Poisson bivector corresponding to the K (k)

0 is P = ∫
θθk , definining on Â the

differential

DP =
∑

n

(θn+k − θn−k)
∂

∂un
.

The cohomology H(DP , Â) is, hence, the polynomial ring generated by the 2k variables
{θ, θ1, . . . , θ2k−1}. This implies dim H(DP , Â) = 22k and dim H p(DP , Â) = (2k

p

)
.

Using the same long exact sequence argument we exploited in the proof of the main
theorem, we have the first general result on the Poisson cohomology for P , namely
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Theorem 2. H p(dP , F̂) = 0 for p > 2k.

As in the (−1, 1) case, the lower cohomology groups should be computed explicitly. We
observe, however, that already in the 2-stretched case H2(dP , F̂) �= 0.

We have indeed P = ∫
θθ2 and

H2(DP , Â) = 〈θθ1, θθ2, θθ3, θ1θ2, θ1θ3, θ2θ3〉 .

The relevant part of the long exact sequence in cohomology is the following

. . . �� H2(Â)
S−1 �� H2(Â)

∫

�� H2(F̂)
b �� H3(Â)

S−1 �� . . . . (5.3)

from which we have that

H2(F̂) =
∫

H2(Â) ⊕ b−1
(
Ker(S − 1)|H3(Â)

)
.

The integral map on H2(Â) gives θθ1 ∼ θ1θ2 ∼ θ2θ3 ∼ −θθ3 and θθ2 ∼ θ1θ3 ∼
−θθ2 ∼ 0, corresponding to the bivector

∫
θθ1. On the other hand, H3(Â) is the 4-

dimensional vector space 〈θθ1θ2, θθ1θ3, θθ2θ3, θ1θ2θ3〉. The kernel of (S − 1) in the
cohomology is 1-dimensional, explicitly 〈θθ1θ2 + θθ1θ3 + θθ2θ3 + θ1θ2θ3〉. These obser-
vations are enough to state the nontriviality of the second Poisson cohomology group for
the 2-stretched operator, and in particular that it is 2-dimensional. The constant bivector
in H2(F̂) corresponds to the operator K0.

In Sect. 2.5 we have explained that 2-cochains correspond to nontrivial infinitesimal
deformations of the Poisson bivector. Our result means that there does not exists an
evolutionary vector field X̂ such that [X̂ , P] = ∫

θθ1. However, we can find a formal
vector field X̂ f solution of

[X̂ f , P] =
∫

δ X̂ f

δu

δP

δθ
=

∫
θθ1. (5.4)

Indeed, (5.4) is equivalent to the following set of equations for X̂ f = ∫
X f θ

Sm
(

∂ X f

∂u−1−m
− ∂ X f

∂u3−m

)

= δm,0. (5.5)

A solution of this system is X f = ∑
m�0 u−4m−1. The formal vector turns out to be an

infinite sum of vector fields of characteristic u−4m−1. This result does not contradict our
statement about Poisson cohomology, since by definition the characteristic of a vector
field is an element of the algebra of difference functions, and suche elements depend
only on a finite number of varaibles un .

Remark 5. The structure of the Poisson cohomology for the stretched operator has a
striking resemblance to the Poisson cohomology of constant higher order scalar differ-
ential Hamiltonian operators. In [2, Remark 15] the Poisson cohomology for the first
order scalar differential operator is obtained with a similar approach to the one adopted
in this paper. The procedure can be repeated for higher order differential operators of the
form Qk(∂) = ∂2k+1. In this case we obtain H p(Qk) = 0 for p > 2k +1, too. Similarly,
H2(Qk) �= 0 for k > 0, and in particular the first order scalar differential operator ∂ is a
cocycle of Q1. However, a major difference between the difference and the differential
case is the lack of the formal vector field mapping Q1 into Q0.
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6. Final Remarks

The results obtained in this paper constitute an analogue of Getzler’s theorem for the
Poisson cohomology of Hamiltonian operators, in the restricted contest of the scalar
case, in the difference setting.

The vanishing of the second and third cohomology group for K0 = S − S−1 means
that there exist a Miura-type change of coordinates u �→ f (u, u−1, u1, . . .) under which
a Hamiltonian operator compatible with K0 is of the form K0. Moreover, we have
explicitly shown in Section 3 that any scalar difference Hamiltonian of order (−1, 1)
can be brought to the form K0 with a change of coordinates, hence implying that the
aforementioned result holds for any Hamiltonian operator of this order. However, the
change of coordinates can be formal, as discussed in Section 4.2; this is already well
known in the differential case, because the Poisson cohomology guarantees the existence
of vector fields, for which the change of coordinates is the action of their exponential
map.

De Sole et al. [7] have obtained the general form for scalar Hamiltonian operators
from order (−1, 1) up to (−5, 5). Using the theory of multiplicative Poisson vertex
algebras we see the dependency on an arbitrary function can be removed by a change of
coordinates (3.3)—one can verify on a case-by-case basis that the same result holds for
all the operators in the classification—, while the theorem we proved implies that there
exists an (operator-dependent) system of coordinates where any operator compatible
with K0 is of the form K0. This does not affect the Hamiltonian operators of their
classification which are not compatible with the (−1, 1) order one (and are of order
(−4, 4) and (−5, 5)).

Another minor contribution present in this paper is the observation that the integrable
hierarchy defined by the biHamiltonian pair constituted by a (−1, 1) Hamiltonian oper-
ator and a compatible (−3, 3) order one is, despite the different order of the Hamiltonian
operators, equivalent to the Volterra hierarchy.

All the results obtained in this paper apply to local Hamiltonian operators, namely
to operators which are polynomials in S and S−1. A theory of rational Hamiltonian
operators has been recently developed [5] and allows to deal with a broader class of
integrable differential–difference equations; these operators define a subclass of nonlocal
multiplicative Poisson vertex algebras, a notion recently defined by De Sole et al. [8]
and obtained allowing infinite series in S and S−1 in the definition of the operators. The
Poisson cohomology of such a larger class of structures is the natural further topic in
the direction of their classification.
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A. Multiplicative Poisson Vertex Algebras and Hamiltonian Structures

In Sects. 2 and 4 we have adopted the formalism of multiplicative Poisson vertex alge-
bras (multiplicative PVAs), introduced by De Sole, Kac, Valeri and Wakimoto [7], as a
computational tool for operating on difference operators.

In this appendix we present the main results we need and that we have referenced in
the paper.

A.1. The definition. In this paragraph we present the definition of multiplicative PVAs
and the so-called master formula, the main computational tool they provide. The equiv-
alence between Hamiltonian operators, Poisson bivectors and multiplicative PVAs has
been discussed in Proposition 4.

Definition 4. Amultiplicative PVA is an algebra of difference functions (A,S) endowed
with a R-bilinear operation

{ λ } : A × A → A[λ, λ−1]

{ fλg} :=
N∑

s=−N

c( f, g)(s)λ
s (A.1)

called the λ bracket, satisfying the properties

1. (sesquilinearity) {S fλg} = λ−1{ fλg}, { fλSg} = (λS){ fλg};
2. (left Leibniz rule) { fλgh} = { fλg}h + g{ fλh};
3. (right Leibniz rule) { f gλh} = { fλSh}g + {gλSh} f – this should be interpreted as

{ fλSh}g = ∑
c( f, h)(s)Ss gλs ;

4. (skewsymmetry) {gλ f } = −→{ f(λS)−1g}, where the right hand side should be read
as −∑

(λS)sc( f, g)(s);
5. (PVA-Jacobi identity) { fλ{gμh}} − {gλ{ fλh}} = {{ fλg}λμh}.
A Hamiltonian (� × � matrix of) difference operator K i j defines a multiplicative PVA
by letting

{ui
λu j } := K ji

∣
∣S→λ

= K ji (λ) (A.2)

and then extending the bracket from the generators ofA to the full algebra according to
the properties (1)–(3).

The expression for the bracket on the full algebraA is called the master formula and
it has the form

{ fλg} =
�∑

i, j=1

∑

n,m∈Z

∂g

∂u j
m

(λS)m{ui
λSu j }(λS)−n ∂ f

∂ui
n
. (A.3)

In particular, the condition of being an Hamiltonian operator for K is equivalent the
PVA-Jacobi identity for any triple of generators (ui , u j , uk) [7]. Explicitly, we have

�∑

l=1

∑

n∈Z

(
∂K kj (μ)

∂ul
n

(λS)n K li (λ) − ∂K ki (λ)

∂ul
n

(μS)n K l j (μ)

)

=
�∑

l=1

∑

n∈Z
K kl(λμS)(λμS)−n ∂K ji (λ)

∂ul
n

. (A.4)
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A.2. Equivalence between Schouten and PVA-Jacobi identities in the scalar case. In
the scalar case, the PVA-Jacobi identity for the multiplicative λ bracket defined by the
difference operator K = ∑

s K (s)Ss is

∑

n,m,q∈Z

(
∂K (m)

∂un

(
Sn K (q)

)
λn+qμm − ∂K (m)

∂un

(
Sn K (q)

)
μn+qλm

− K (m)

(

Sm−n ∂K (q)

∂un

)

λm+q−nμm−n

)

= 0. (A.5)

The skewsymmetry property (2.36) imposes a special form for a scalar bracket, namely
K (−s) = −S−s K (s), or

{uλu} =
∑

s>0

K (s)λs − S−s K (s)λ−s (A.6)

which gives the explicit form for the PVA-Jacobi identity

−∂K (m)

∂un
Sn K (q) λμ(m, n + q) +

∂K (m)

∂un
Sn−q K (q) λμ(m, n − q)

− (Sn K (q))

(

S−m ∂K (m)

∂un+m

)

λμ(n + q,−m)

+ (Sn−q K (q))

(

S−m ∂K (m)

∂un+m

)

λμ(n − q,−m)

−K (q)

(

Sq−n ∂K (m)

∂un

)

λμ(q − n + m, q − n)

− (S−q K (q))

(

S−q−n ∂K (m)

∂un
λμ(−q − n + m,−q − n)

)

= 0, (A.7)

where we have denoted for short λμ(a, b) = −λμ(b, a) = λaμb − λbμa .
On the other hand, the skewsymmetric operator K corresponds to the bivector

P =
∑

s>0

1

2

∫
K (s) θθs,

for which we want to compute the Schouten identity

[P, P] = 2
∫

δP

δθ

δP

δu
. (A.8)

We compute the two variational derivatives obtaining

δP

δθ
= K (m)θm −

(
S−m K (m)

)
θ−m, (A.9)

δP

δu
=

(

S−s ∂K (m)

∂us

)

θ−sθm−s, (A.10)



A Darboux–Getzler Theorem

making

[P, P] = 1

2

∫ (

K (m)

(

S−s ∂K (q)

∂us

)

θmθ−sθq−s

− (S−m K (m))

(

S−s ∂K (q)

∂us

)

θ−mθ−sθq−s

)

. (A.11)

We then exploit the analogue of the normalisation operator introduced by Barakat [1]
which gives a standard form of elements in F̂ . We have

F = N F := 1

p
θ
δF

δθ
for F ∈ F̂ p, (A.12)

where the equality holds in F̂ , namely F − N F = (S − 1)G for F, G ∈ F̂ .
We obtain [P, P] = ∫

θT , with

T = (S−m K (m))

(

S−s−m ∂K (q)

∂us

)

θ−m−sθ−m−s+q

− (Ss K (m))
∂K (q)

∂us
θm+sθq + (Ss−q K (m))

(

S−q ∂K (q)

∂us

)

θs+m−qθ−q

− K (m)

(

Sm−s ∂K (q)

∂us

)

θm−sθq−s+m + (Ss−m K (m))
∂K (q)

∂us
θs−mθq

− (Ss−q−m K (m))

(

S−q ∂K (q)

∂us

)

θs−q−mθ−q . (A.13)

The vanishing of [P, P] is hence equivalent to the vanishing of T . We observe that,
after a change of names of the indices, (A.13) takes the very form of (A.7) when we
identify λμ(a, b) with θbθa . We illustrate the procedure for just one of the six terms—it
is straightforward to check the same for all the remaining ones.
In (A.7) we have a term of the form

(Sn−q K (q))

(

S−m ∂K (m)

∂un+m

)

λμ(n − q,−m). (A.14)

In (A.13), on the other hand, we have

−(Ss−q−m K (m))

(

S−q ∂K (q)

∂us

)

θs−q−mθ−q

= (Ss−q−m K (m))

(

S−q ∂K (q)

∂us

)

θ−qθs−q−m . (A.15)

A change of indices (t → m, n → s − q, m → q) in (A.14) gives

(Ss−q−m K (m))

(

S−q ∂K (q)

∂us

)

λμ(s − q − m,−q), (A.16)

namely the corresponding term in T after the aforementioned identification.
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A.3. Compatible pairs of multiplicative PVA. Two λ brackets {·λ·}1,2 of multiplicative
PVAs are said to be compatible if the bracket {·λ·}1 + α{·λ·}2 is the λ bracket of a
multiplicative PVA for all the values of α ∈ C.
In [7], the authors provide the classification of all the scalar multiplicative PVAs up to
the order (−5, 5) (we say that a scalar multiplicative λ bracket is of order (M, N ) if it is
of the form {uλu} = ∑N

s=M a(s)λs , namely if the corresponding difference operator is of
the same order). The compatible pairs among their list are the following [7, Theorem 2.5,
8.1, 9.1]:

1. For a function g(u) and c2, . . . , c5 arbitrary constants, the pair

{uλu}1,g := g(u)g(u1)λ − g(u)g(u−1)λ
−1

and

{uλu}g =
5∑

k=2

ck{uλu}k,g :=
5∑

k=2

ck

(
g(u)g(uk)λ

k − g(u)g(u−k)λ
−k

)
. (A.17)

2. For a nonzero function g(u), {uλu}1,g as above and

{uλu}∼2,g := g(u)g(u2)e
F(u1)λ2 + g(u)g(u1)

(
eF(u) + eF(u1)

)
λ

− S−1g(u)g(u1)
(

eF(u) + eF(u1)
)

λ−1 − S−2g(u)g(u2)e
F(u1)λ−2,

(A.18)

where F(u) = ∫ u 1
g .

3. For a nonzero function g(u), {uλu}1,g as above and

{uλu}∼3,g := g(u)g(u3)e
F(u1)+iF(u2)λ3+

+ ig(u)g(u2)
(

eF(u)+iF(u1) − eF(u1)+iF(u2)
)

λ2+

+ g(u)g(u1)e
F(u)+iF(u1)λ − S−1g(u)g(u1)e

F(u)+iF(u1)λ−1

− S−2ig(u)g(u2)
(

eF(u)+iF(u1) − eF(u1)+iF(u2)
)

λ−2

− S−3g(u)g(u3)e
F(u1)+iF(u2)λ−3. (A.19)

4. For a nonzero function g(u), {uλu}∼2,g as above and the (−4, 4) order bracket

{uλu}(iv)
g = g(u)g(u4)e

F(u1)−F(u2)+F(u3)λ4 − S−4g(u)g(u4)e
F(u1)−F(u2)+F(u3)λ−4

+ g(u)g(u3)
(

eF(u)−F(u1)+F(u2) + eF(u1)−F(u2)+F(u3)
)

λ3+

− S−3g(u)g(u3)
(

eF(u)−F(u1)+F(u2) + eF(u1)−F(u2)+F(u3)
)

λ−3

+ g(u)g(u2)e
F(u)−F(u1)+F(u2)λ2 − S−2g(u)g(u2)e

F(u)−F(u1)+F(u2)λ−2.

(A.20)
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5. For a nonzero function g(u), {uλu}1,g + {uλu}2,g as defined above and the following
(−5, 5) order bracket

{uλu}(v)
g = g(u)g(u5)e

εF(u2)+F(u3)λ5 − S−5g(u)g(u5)e
εF(u2)+F(u3)λ−5

− g(u)g(u4)
(
εeεF(u1)+F(u2) + ε−1eεF(u2)+F(u3)

)
λ4

+ S−4g(u)g(u4)
(
εeεF(u1)+F(u2) + ε−1eεF(u2)+F(u3)

)
λ−4

+ g(u)g(u3)
(
ε−1eεF(u)+F(u1) + eεF(u1)+F(u2) + εeεF(u2)+F(u3)

)
λ3

− S−3g(u)g(u3)
(
ε−1eεF(u)+F(u1) + eεF(u1)+F(u2) + εeεF(u2)+F(u3)

)
λ−3

− g(u)g(u2)
(
εeεF(u)+F(u1) + ε−1eεF(u1)+F(u2)

)
λ2

S−2g(u)g(u2)
(
εeεF(u)+F(u1) + ε−1eεF(u1)+F(u2)

)
λ−2

+ g(u)g(u1)e
εF(u)+F(u1)λ − S−1g(u)g(u1)e

εF(u)+F(u1)λ−1, (A.21)

where we denote ε a primitive 3rd root of 1.

Each of these brackets defines, equivalently, a scalar Hamiltonian operator, and compat-
ible brackets define biHamiltonian pairs.

B. Change of Coordinates on K̃2,g

In Sect. 4 we obvserved that the dependency on the function of single variable g(u) in
the classification presented in [7]—and in particular for the compatible operators listed
in Appendix A.3—can be removed by a change of coordinates

u �→ v =
∫ u 1

g(s)
ds. (B.1)

In this paragraph we demonstrate the effect of this change of coordinates on the Hamil-
tonian operator K̃2,g defined in (A.18). Its associated λ bracket is

{uλu} = g(u)g(u2)e
∫ u1 1

g λ2 + g(u)g(u1)
(

e
∫ u 1

g + e
∫ u1 1

g

)
λ

− g(u)g(u−1)
(

e
∫ u 1

g + e
∫ u−1 1

g

)
λ−1 − g(u)g(u−2)e

∫ u−1 1
g λ−2. (B.2)

We compute the bracket in the new coordinate

v =
∫ u 1

g(s)
ds

using the master formula (A.3). By the skewsymmetry of the bracket, it is sufficient to
perform the change of coordinate for the terms in the positive degrees for λ, while the
negative degree will follow according to the general rule (A.6).
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For simplicity, we compute the transformation for each summand separately, according
to the order of λ: {uλu} = {uλu}(2) + {uλu}(1) − {uλu}(−1) − {uλu}(−2). We have

{vλv}(2) = 1

g(u)
g(u)g(u2)e

∫ u1 1
g

(

S2 1

g(u)

)

λ2

= 1

g(u)
g(u)g(u2)

1

g(u2)
e
∫ u1 1

g λ2 = e
∫ u1 1

g λ2 = ev1λ2 (B.3)

and

{vλv}(1) = 1

g(u)
g(u)g(u1)

(
e
∫ u 1

g + e
∫ u1 1

g

) (

S 1

g(u)

)

λ

= 1

g(u)
g(u)g(u1)

1

g(u1)

(
e
∫ u 1

g + e
∫ u1 1

g

)
λ

=
(

e
∫ u 1

g + e
∫ u1 1

g

)
λ = (

ev + ev1
)
λ. (B.4)

{uλu}(−1) and {uλu}(−2) are then obtained by the skewsymmetry property. Notice that
the result we obtained is the same as substituting g(u) = 1 in the definition of the
bracket.
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