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Abstract: In this paper we introduce the concept of preHamiltonian pairs of difference
operators, demonstrate their connections with Nijenhuis operators and give a criteria for
the existence of weakly nonlocal inverse recursion operators for differential–difference
equations. We begin with a rigorous setup of the problem in terms of the skew field of
rational (pseudo–difference) operators over a difference field with a zero characteristic
subfield of constants and the principal ideal ring of matrix rational (pseudo–difference)
operators. In particular, we give a criteria for a rational operator to be weakly nonlocal.
A difference operator is called preHamiltonian, if its image is a Lie subalgebra with
respect to the Lie bracket on the difference field. Two preHamiltonian operators form
a preHamiltonian pair if any linear combination of them is preHamiltonian. Then we
show that a preHamiltonian pair naturally leads to a Nijenhuis operator, and a Nijen-
huis operator can be represented in terms of a preHamiltonian pair. This provides a
systematic method to check whether a rational operator is Nijenhuis. As an applica-
tion, we construct a preHamiltonian pair and thus a Nijenhuis recursion operator for
the differential–difference equation recently discovered by Adler and Postnikov. The
Nijenhuis operator obtained is not weakly nonlocal. We prove that it generates an in-
finite hierarchy of local commuting symmetries. We also illustrate our theory on the
well known examples including the Toda, the Ablowitz–Ladik, and the Kaup–Newell
differential–difference equations.

1. Introduction

The existence of an infinite hierarchy of commuting symmetries is one of a characteris-
tic property of integrable systems. Symmetries can be generated by recursion operators
[1,2], which are often pseudo–differential and map a symmetry to a new symmetry. An
important property of recursion operators, called the Nijenhuis property, is to generate
an abelian Lie algebra of symmetries. Such property has been independently studied
by Fuchssteiner [3] and Magri [4]. To prove that a pseudo–differential operator is a
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Nijenhuis operator and it generates an infinite hierarchy of local symmetries is a chal-
lenging problem. In the most common case of weakly nonlocal Nijenhuis operators this
problem has been addressed in [5–7]. The relations between bi-Hamiltonian structures
and Nijenhuis operators have been studied in papers of Gel’fand and Dorfman [8,9] and
Fuchssteiner and Fokas [10,11]. Recently a rigorous approach to pseudo–differential
Hamiltonian operators have been developed in the series of papers by Barakat, De Sole,
Kac and Valeri [12–14].

The theory of integrable differential–difference equations is much less developed.
The basic concepts for symmetries, conservation laws and Hamiltonian operators were
formulated in the frame of a variational complex in [15]. The aim of this paper is to build
up a rigorous setting for rational matrix (pseudo–difference) operators suitable for the
study of integrable differential–difference systems. We introduce and study preHamil-
tonian pairs of difference operators, their connections with Nijenhuis operators and
the existence of weakly nonlocal inverse recursion operators for differential–difference
equations.

Let us consider the well-known Volterra chain

ut = u(u1 − u−1), (1)

where u is a function of a lattice variable n ∈ Z and time t . Here we use the notations

ut = ∂t (u), u j = S j u(n, t) = u(n + j, t)

and S is the shift operator. It possesses a recursion operator

R = uS + u + u1 + uS−1 + u(u1 − u−1)(S − 1)−1 1

u
,

where (S − 1)−1 stands for the inverse of S − 1. Thus this operator is only defined
on u Im(S − 1). It is a Nijenhuis operator and generates a commutative hierarchy of
symmetries:

ut j = R j (ut ) = R j (u(u1 − u−1)) , j = 0, 1, 2, . . . .

The concept of Hamiltonian pairs was introduced by Magri [16]. He found that some
systems admitted two distinct but compatible Hamiltonian structures (a Hamiltonian
pair) and named them twofold Hamiltonian system, nowadays known as bi-Hamiltonian
systems. The Volterra chain is a bi-Hamiltonian system and it can be written

ut = H1 δuu = H2 δu
ln u

2
,

where δu is variational derivative with respect to the dependent variable u and two
difference operators

H1 = u(S − S−1)u;
H2 = u(SuS + uS + Su − uS−1 − S−1u − S−1uS−1)u

form a Hamiltonian pair. The Nijenhuis recursion operator of the Volterra chain can be
obtained via the Hamiltonian pair, that is, R = H2H

−1
1 . This decomposition is known

as the Lenard scheme used to construct the hierarchies of infinitely many symmetries
and cosymmetries.
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Notice that the above difference operators have a right common factor:

H1 = u(S − 1)(1 + S−1)u; H2 = u(1 + S)(uS − S−1u)(1 + S−1)u.

This implies that

R = AB−1, where A = u(S + 1)(uS − S−1u) and B = u(S − 1). (2)

Here operators A and B are not skew-symmetric, and thus not Hamiltonian. However,
like in the case of Hamiltonian pairs, the image of A and B, as well as the image of
linear combinations of these two operators, form a Lie subalgebra. Such operators we
call preHamiltonian operator. In this paper, we explore properties of such operators and
their relations with Nijenhuis operators. For the differential case some of these results
have been obtained in [17]. The main difference between differential operators and
difference operators lies in that the total derivative is a derivation and the shift operator
S is an automorphism. The set of invertible difference operators is much richer than in
the differential case. In the scalar case all difference operators of the form aS j , where a
is a difference function and j ∈ Z, are invertible, while in the differential case, the only
invertible operators are operators of multiplication by a function. The definition of the
order of difference and differential operators are essentially different.

The arrangement of this paper is as follows: In Sect. 2, we define a difference field
F, the Lie algebraA of its evolutionary derivations (or evolutionary vector fields) which
is a subalgebra of Der F and discuss algebraic properties of the noncommutative ring of
difference operators. In particular, we show that it is a right and left Euclidean domain
and satisfies the right (left) Ore property. Then we define the skew field of rational
(pseudo–difference) operators, i.e. operators of the form AB−1, where A and B are
difference operators. Next we discuss the relation between rational operators and weakly
nonlocal operators, namely we formulate a criteria for a rational operator to be weakly
nonlocal. Finally we adapt all these results to rational matrix difference operators by
defining the order of the operator as the order of its Dieudonné determinant. In Sect. 3
we define preHamiltonian difference operators as operators on F whose images define
a Lie subalgebra in A. We explore the interrelation between preHamiltonian pairs and
Nijenhuis operators.We show that if operators A and B form a preHamiltonian pair, then
R = AB−1 is Nijenhuis. Conversely, if R is Nijenhuis and B is preHamiltonian, then A
and B form a preHamiltonian pair. These two sections are the theoretical foundation of
the paper. In Sect. 4, we give basic definitions such as symmetries, recursion operators
and Hamiltonian for differential–difference equations. We also show how operators A
and B are related to the equation if AB−1 is its recursion operator. In the next two
sections we apply the theoretical results in Sects. 2 and 3 to integrable differential–
difference equations. In Sect. 5, we construct a recursion operator for a new integrable
equation derived by Adler and Postnikov in [18]:

ut = u2(u2u1 − u−1u−2) − u(u1 − u−1),

using its Lax representation presented in the same paper. The obtained recursion operator
is no longer weakly nonlocal. We show that it is indeed Nijenhuis by rewriting it as
a rational difference operator and that it generates infinitely many commuting local
symmetries. To improve the readability, we put some technical lemmas used for the
proof of the main result on the locality of commuting symmetries in “Appendix B”. For
some integrable differential–difference equations, such as the Ablowitz–Ladik Lattice
[19], the recursion operator and its inverse are both weakly nonlocal. In Sect. 6, we apply
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the theoretical results from Sect. 2 to check whether the inverse recursion operators are
weakly nonlocal, and if so, we demonstrate how to cast them in the weakly nonlocal
form. To illustrate the method we choose four typical examples. However, the method is
general and it can be applied to any integrable differential–difference system, including
all systems listed in [20].At the endof the paperwegive a short conclusion anddiscussion
on our new results on relation between preHamiltonian and Hamiltonian operators. To
be self-contained, we also include “Appendix A”, containing some basic definitions for
a unital non-commutative ring.

2. Algebraic Properties of Difference Operators

In this section, we give a definition of rational difference operators and explore their
properties. The main objects of our study in this paper are systems of evolutionary
differential–difference equations and hidden structures associated with them. We first
consider the scalar case. A generalization to the multi-component case will be discussed
in the end of this section.

2.1. Difference field and its derivations. Let k be a zero characteristic base field, such
as C or R. We define the polynomial ring

K = k[. . . , u−1, u0, u1, . . .]
of the infinite set of variables {u} = {uk; k ∈ Z} and the corresponding field of fractions

F = k(. . . , u−1, u0, u1, . . .).

It is assumed that every element of K and F depends on a finite number of variables only.
We will denote F� the subset of nonzero elements F� = F\{0} of F.

There is a natural automorphism S of the field F, which we call the shift operator,
defined as

S : a(uk, . . . , ur ) �→ a(uk+1, . . . , ur+1), S : α �→ α, a(uk, . . . , ur ) ∈ F, α ∈ k.

For a = a(uk, . . . , ur ) ∈ F we will often use notation

ai = S i (a) = a(uk+i , . . . , ur+i ), i ∈ Z,

and omit index zero at a0 or u0 when there is no ambiguity. The field F equipped with
the automorphism S is a difference field and the base field k is its subfield of constants.

The reflection T of the lattice Z defined by

T : a(uk, . . . , ur ) �→ a(u−k, . . . , u−r ), T : α �→ α, a(uk, . . . , ur ) ∈ F, α ∈ k,

is another obvious automorphism of F and K. The composition ST ST = Id is the
identity map. Thus the automorphisms S, T generate the infinite dihedral group D∞
and the subgroup generated by S is normal.

The automorphism T defines aZ2 grading of the difference field F (and ring K ⊂ F):

F = F0 ⊕ F1, F0 · F0 = F0, F0 · F1 = F1, F1 · F1 = F0,

where Fk = {a ∈ F | T (a) = (−1)ka}.
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Partial derivatives ∂
∂ui

, i ∈ Z are commuting derivations of F satisfying the conditions

S ∂

∂ui
= ∂

∂ui+1
S, T ∂

∂ui
= ∂

∂u−i
T . (3)

A derivation of F is said to be evolutionary if it commutes with the shift operator S.
Such derivation is completely determined by one element of f ∈ F and is of the form

X f =
∑

i∈Z
S i ( f )

∂

∂ui
, f ∈ F. (4)

An element f is called the characteristic of the evolutionary derivation X f . The action
of X f (a) for a ∈ F can also be represented in the form

X f (a) = a∗[ f ],
where a∗[ f ] is the Fréchet derivative of a = a(u p, . . . , uq) in the direction f defined
as

a∗[ f ] := d

dε
a(u p + ε f p, . . . , uq + ε fq)|ε=0 =

q∑

i=p

∂a

∂ui
fi .

The Fréchet derivative of a = a(u p, . . . , uq) is a difference operator represented by a
finite sum

a∗ =
q∑

i=p

∂a

∂ui
S i . (5)

It is obvious that

(T a)∗ =
q∑

i=p

T
(

∂a

∂ui

)
S−i .

Evolutionaryderivations formaLie subalgebraA in the theLie algebraDer F. Indeed,

αX f + βXg = Xα f +βg, α, β ∈ k,
[X f , Xg] = X[ f,g],

where [ f, g] ∈ F denotes the Lie bracket

[ f, g] = X f (g) − Xg( f ) = g∗[ f ] − f∗[g]. (6)

Lie bracket (6) is k–bilinear, anti-symmetric and satisfies the Jacobi identity. Thus F,
equipped with the bracket (6), has a structure of a Lie algebra over k.

The reflection T acts naturally on evolutionary vector derivations

T : X f �→ XT ( f ) = T · X f · T .

Thus the A is a graded Lie algebra

A = A0 ⊕ A1, [A0,A0] ⊂ A0, [A0,A1] ⊂ A1, [A1,A1] ⊂ A0,

where Ak = {X ∈ A | T (X) = (−1)k X}.
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2.2. Rational difference operators. In this sectionwe give definitions of difference oper-
ators and rational pseudo–difference operators, which for simplicitywe shall call rational
operators. We refer to the “Appendix A” for general results and definitions related to
principal ideal domains. Although Corollary 1 and the first part of Proposition 2 follow
directly from Proposition 1 in the abstract setting of Euclidean domains, we provide
complete proofs for the sake of completeness.

Definition 1. A difference operator B of order ord B := (M, N ) with coefficients in F
is a finite sum of the form

B = b(N )SN + b(N−1)SN−1 + · · · + b(M)SM , b(N )b(M) 	= 0, b(k) ∈ F,

M ≤ N , N , M ∈ Z. (7)

The total order of B is defined as OrdB = N − M . The total order of the zero operator
is minus infinity Ord 0 := −∞ by definition.

The Fréchet derivative (5) is an example of a difference operator of order (p, q) and
total order Ord a∗ = q − p. For an element f ∈ F the order and total order are defined
as ord f∗ and Ord f∗ respectively.

Difference operators form a unital ringR = F[S,S−1] of Laurent polynomials in S
with coefficients in F, where multiplication is defined by

aSn · bSm = aSn(b)Sn+m = abnSn+m . (8)

This multiplication is associative, but non-commutative. The definitions of some basic
concepts for a unital associative ring are presented in the “Appendix A”.

From the above definition it follows that if A is a difference operator of order ord A =
(p, q), then ord (Sn · A ·Sm) = (p+n +m, q +n +m) and Ord (Sn · A ·Sm) = Ord A =
q − p. For any A, B ∈ R we have Ord (AB) = Ord A + Ord B. Thus the total order is
homomorphisms of the multiplicative monoid R to Z≥0 ∪ {∞}.

The reflection T can be extended to an automorphism ofR given by

T · aSm · T = T (a)S−m

and defines a grading of R as follows:

R = R0 ⊕ R1, Rk = {A ∈ R | T · A · T = (−1)k A}.
It is obvious that Ord(T · A · T ) = Ord A.

A difference operator which has only one term aSn, a ∈ F∗, n ∈ Z is called a
monomial difference operator. The set of monomial difference operators are of the form
aSn, a 	= 0. They have total order equal to zero and are invertible in R. Monomial
difference operators equipped with multiplication (8) form a nonabelian group

R� = {aSn | a ∈ F�, n ∈ Z}.
We will use the notation LT(B) for a monomial difference operator representing the

leading term of a difference operator which is the naturally ordered sum. For the operator
B in (7), we have LT(B) = b(N )SN .

Proposition 1. The ring R is a right and left Euclidean domain.
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Proof. Let us show that R is a right Euclidean, that is, for any A, B ∈ R there exist
unique Q, R ∈ R such that A = B · Q + R and either R = 0 or Ord R < Ord B. First
we prove the existence of Q, R. If A = 0, then we can take Q = R = 0. If A 	= 0
and Ord A < Ord B, we can take Q = 0, R = A. For Ord A ≥ Ord B we proceed by
induction on Ord A = 0 (= Ord B), then A = aSN , B = bSM for some N , M ∈ Z

and they are invertible. Thus A = BB−1A and we can take R = 0, Q = B−1A =
S−M (a/b)SN−M . Finally, consider the case Ord A = n ≥ 1, Ord B = m, n ≥ m
and assume that the statement is true for all operators A with total order less than n.
Let the leading terms LT(A) = aSN and LT(B) = bSM . The difference operator
Â = A− B · (bSM )−1 · aSN has Ord Â < Ord A = n. Hence we can use the induction
assumption and find Q̂, R̂, such that Â = BQ̂ + R̂ and either R̂ = 0 or Ord R̂ < OrdB.
Thus

A − B · (bSM )−1 · aSN = BQ̂ + R̂,

that is,

A = B((bSM )−1 · aSN + Q̂) + R̂.

Therefore Q = (bSM )−1 · aSN + Q̂ and R = R̂. As for the uniqueness, if one has
BQ + R = BQ̃ + R̃ with Ord R < OrdB, Ord R̃ < OrdB, then B(Q − Q̃) = R̃ − R.
If Q 	= Q̃ we arrive to a contradiction since Ord(B(Q − Q̃)) > Ord(R̃ − R). Thus
Q = Q̃ and R = R̃. The proof of the left Euclidean property is similar. �
Corollary 1. Every right (left) ideal of the ringR is principal and generated by a unique
element A ∈ R of minimal possible order with the leading term LT(A) = 1.

Proof. The zero ideal is obviously principal, it is generated by 0. Let J ⊂ R be a
right ideal and Â ∈ J be an element of least possible total order. The element A =
Â ·LT( Â)−1 ∈ J , is of the same total order and with the leading term LT(A) = 1. Then
for any other element B ∈ J we have B = AQ + R with either R = 0 or Ord R <

Ord A. Since B ∈ J , we conclude that R = 0, otherwise Ord R < Ord A, which is in
contradiction with the assumption that A has the least possible order. Such element A is
obviously unique. If we assume the existence of Ã ∈ J, Ord Ã = Ord A, LT( Ã) = 1,
then A − Ã ∈ J and Ord (A − Ã) < Ord A. The latter is in contradiction with the
assumption that A has the least possible order. In a similar way we show thatR is a left
principal ideal ring. �
Proposition 2. The ringR satisfies the right (left)Ore property, that is, for any A, B ∈ R
their exist A1, B1, not both equal to zero, such that AB1 = BA1, (resp. B1A = A1B).
In other words, the right (left) ideal AR ∩ BR (resp. RA ∩ RB) is nontrivial. Its
generator M has total order OrdA + OrdB − OrdD, where D is the greatest left (resp.
right) common divisor of A and B.

Proof. Let us assume that Ord A ≥ Ord B (otherwise we swap and rename A, B). If
B = 0, then B1 = 0. If B 	= 0, we prove the claim by induction on Ord B. We assume
that the statement is true for any B withOrd B < k andwewill show that it is also true for
any B, Ord B = k. SinceR is right Euclidean, there exist Q, R such that A = BQ + R
and either R = 0 or Ord R < OrdB. If R = 0 we take A1 = Q, B1 = 1 and we
are done. Since Ord R < k, there exist B̂, R̂ such that B R̂ = RB̂, Ord R̂ ≤ OrdR and
Ord B̂ ≤ OrdB. Thus

AB̂ = (BQ + R)B̂ ⇔ AB̂ = B(QB̂ + R̂)
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and we can take A1 = QB̂ + R̂, B1 = B̂. Finally, we can see that OrdA1 ≤ OrdA and
OrdB1 ≤ OrdB. The proof of the left Ore property is similar.

We proved that for any A, B ∈ R not both zero, the ideal I = AR ∩ BR is not
trivial. SinceR is both a right and left principal ideal ring, I is generated by a difference
operator M , I = MR. In particular, M = AB1 = BA1 for some difference operators
B1 and A1. From the first part of the proof, we know that OrdM ≤ OrdA + OrdB.
Let us assume that A and B are left coprime and that OrdM < OrdA + OrdB. The
ideal J = RA1 ∩ RB1 is also nontrivial and generated by a difference operator N .
We know that OrdN is at most OrdA1 + OrdB1. M is an element of J and OrdM =
OrdA + OrdB1 > OrdA1 + OrdB1 ≥ OrdN , hence there exists a difference operator C
such that M = CN and OrdC > 0. Let A2 and B2 be such that A2B1 = B2A1 = N .
Then A = CA2 and B = CB2, which contradicts the hypothesis that A and B are left
coprime. �

The fact that R is a principal ideal domain gives sense to the notions of greatest
commondivisors and least commonmultiples (see “AppendixA”). The following lemma,
which will be used in Proposition 13, relates the images of two difference operators to
the image of their right least common multiple.

Lemma 1. Let A and B be twononzero left coprimedifference operatorswith coefficients
in F. Suppose that A(x) = B(y) for some x, y ∈ F. Let M = AC = BD be their right
least common multiple. Then, there exists z ∈ F such that x = C(z) and y = D(z). In
particular ImA ∩ ImB = ImM.

Proof. By definition of M , C and D are right coprime. It follows from the Bezout’s
Lemma that there exist two difference operators U and V such that

UC + V D = 1. (9)

Multiplying (9) on D and on C from the left we obtain

DUC = (1 − DV )D, (10)

CV D = (1 − CU )C. (11)

By assumption A and B are left coprime therefore it follows from Lemma 5 (ii) that
there exist two difference operators P and Q such that

1 − DV = PB, DU = PA

1 − CU = QA, CV = QB.
(12)

Using the assumption A(x) = B(y) and the first line of (12) we get

y = (PB + DV )(y) = PA(x) + DV (y) = D(U (x) + V (y)), (13)

and similarly using the second line of (12) we get

x = (CU + QA)(x) = CU (x) + QB(x) = C(U (x) + V (y)). (14)

Hence, the statement holds with z = U (x) + V (y). �
The domain R can be naturally embedded in the skew field of rational pseudo–

difference operators, which we will call simply rational operators.
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Definition 2. A rational (pseudo–difference) operator L is defined as L = AB−1 for
some A, B ∈ R and B 	= 0. The set of all rational operators is

Q = {AB−1 | A, B ∈ R, B 	= 0}.
Remark 1. The skew field Q is a minimal subfield of the skew field QL of the Laurent
formal series

QL =
{ ∞∑

n=k

a(−n)S−n | a(l) ∈ F, l ∈ Z

}

containing R. As well as it is a minimal subfield of the skew field QT of the Taylor
formal series

QT =
{ ∞∑

n=k

a(n)Sn | a(l) ∈ F, l ∈ Z

}

containingR. The skewfieldsQL andQT are isomorphic. The isomorphism is given by
the reflection map T .

Proposition 3. Any rational operator L = AB−1 can also be written in the form L =
B̂−1 Â with Â, B̂ ∈ R and B̂ 	= 0.

Proof. It follows from the Ore property that for any A, B ∈ R, B 	= 0 there exist
Â, B̂ ∈ R and B̂ 	= 0 such that B̂ A = ÂB. Multiplying this expression on B̂ from the
left and B−1 from the right we obtain L = AB−1 = B̂−1 Â. �

Thus any statement for the representation L = AB−1 can be easily reformulated to
the representation L = B̂−1 Â. In particular,

Q = {AB−1 | A, B ∈ R, B 	= 0} = {B−1A | A, B ∈ R, B 	= 0}.

Proposition 4. Q is the skew field of rational operators over F.

Proof. We need to show that the set Q is closed under addition and multiplication. Let
A, B,C, D ∈ R with B 	= 0, D 	= 0. It follows from the Ore property that there exist
nonzero B̂, D̂ ∈ R such that BD̂ = DB̂. Hence

AB−1 + CD−1 = (AD̂ + C B̂) · (BD̂)−1 ∈ Q.

Also there exist nonzero B̂, Ĉ such that BĈ = C B̂. Hence

(AB−1) · (CD−1) = (AĈ) · (DB̂)−1 ∈ Q

implying that Q is also closed under multiplication. �
Proposition 5. The decomposition L = AB−1, A, B ∈ R of an element L ∈ Q
is unique if we require that B has a minimal possible total order with leading term
LT(B) = 1. For any other decomposition L = Â B̂−1, Â, B̂ ∈ R there exists C ∈ R
such that Â = AC, B̂ = BC. Moreover, if D−1E is a (left) minimal decomposition of
L, then OrdD = OrdB.
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Proof. For a given L ∈ Q the set

J = {X ∈ R | LX ∈ R}
is a right ideal inR. Indeed, if X,Y ∈ J , then L(X +Y ) = LX + LY ∈ Rmeaning that
X + Y ∈ J , and J is stable under right multiplication by any element ofR. The ideal J
is principal, and according to Corollary 1 it is generated by a unique element B of the
least possible order, if we require that the leading term LT(B) = 1. Any other B̂ ∈ J
can be represented as B̂ = BC where C ∈ R, since B is a generator of the principal
right ideal J . By Proposition 2, we know that a generator M of the left ideal generated
by A and B has total order OrdA + OrdB. By definition of M there exist left coprime
difference operators D and E such that DA = EB = M . Therefore D−1E is a left
minimal decomposition of L and OrdD = OrdB. �

The definition of total order for difference operators (Definition 1) can be extended
to rational operators:

Ord (AB−1) := Ord A−Ord B, Ord (B̂−1 Â) := Ord Â−Ord B̂, A, B, Â, B̂ ∈ R.

(15)

Definition 3. A formal adjoint operator A† for any A ∈ Q can be defined recursively:

1. a† = a for any a ∈ F,
2. S† = S−1,
3. (A + B)† = B† + A† for any A, B ∈ Q,
4. (A · B)† = B† · A† for any A, B ∈ Q,
5. (A−1)† = (A†)−1 for any A ∈ Q.

In particular, We say an operator H ∈ Q is skew-symmetric if H† = −H .
For example, we have

(
(S + aS−1) · (b − S)−1

)† = (b − S−1)−1 · (S−1 + S(a)S), a, b ∈ F.

For any A ∈ Q, if ord A = (p, q) thenord A† = (−q,−p).ObviouslyOrd A† = Ord A.

2.3. Rational and weakly nonlocal difference operators. In the theory of integrable sys-
tems, the majority of 1 + 1-dimensional integrable equations possesses weakly nonlo-
cal [21] Nijenhuis recursion operators. For integrable differential–difference equations,
weakly nonlocal operators are often rational operators with only a finite number of non-
local terms of the form a(S − 1)−1b, where a, b ∈ F. In this section, we show how to
write a weakly nonlocal operator as a rational operator and provide a way to test whether
a rational operator is indeed weakly nonlocal. For the differential case, the answers are
given by Lemma 4.5 in [17].

First we give a definition of the full kernel difference operators. We then prove that
for such operators, their inverse are weakly nonlocal.

For a difference operator A ∈ R it is obvious that

dimkKer A ≤ Ord A. (16)

Indeed, if there is an element a ∈ F such that a ∈ Ker A, then we can represent
A = Ã(S − 1) 1a , where Ord Ã = Ord A − 1. Zero total order difference operator is
invertible and thus it has a trivial kernel space. A difference operator of a nonzero order
may also have a trivial kernel in F as well. For example Kerk(S −u) = 0 since equation
S(v) = uv does not have a solution v ∈ F.
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Definition 4. We say that a difference operator has a full kernel in F (is a full kernel
operator) if the dimension of its kernel over the field k equals to the total order of the
operator.

In what follows, we show how to construct a full kernel operator given the generators
of its kernel and prove an important property of such operators.

Proposition 6. Assume that f (1), . . . , f (n) are linearly independent over k in F. Then
there exists a full kernel difference operator P ∈ R such that the f (i), i = 1, . . . , n
span ker P.

Proof. We prove the statement by induction on n. If n = 1, we define

P = (S − 1)
1

f (1)
.

It is clear that Ord P = 1 and its kernel is spanned by f (1). Assume that Q is a full
kernel operator with Ord Q = n−1 and its kernel is spanned by f (1), . . . , f (n−1). Since
f (i), i = 1, . . . , n are linearly independent, we have Q( f (n)) 	= 0 by construction of
Q. We define

P = (S − 1)
1

Q( f (n))
Q.

Clearly it is the required full kernel operator and its kernel is spanned by f (1), . . . ,

f (n). �
Remark 2. A difference operator Q ∈ R with full kernel spanned by the k–linearly
independent elements f (i) ∈ F, i = 1, . . . , n, can be obtained using the determinant
expression

Q(g) = det

⎛

⎜⎜⎜⎝

f (1) · · · f (n) g
S( f (1)) · · · S( f (n)) S(g)

...
...

...
...

Sn( f (1)) · · · Sn( f (n)) Sn(g)

⎞

⎟⎟⎟⎠ for any g ∈ F.

Proposition 7. The inverse operators of full kernel operators are weakly nonlocal.

Proof. We prove the statement by induced on the total order of such operator B. If B is
a full kernel operator with OrdB = 1, it can be written as B = aS i (S − 1)b for some
i ∈ Z. Thus

B−1 = 1

b
S−i (S − 1)−1 1

a

is weakly nonlocal.
Let B be a full kernel operator with the total order of n and a ∈ ker B. It follows

from Proposition 6 that there is a full kernel operator C with total order of n − 1 such
that

B = C(S − 1)
1

a
.

By the induction assumption, C−1 is weakly nonlocal, that is, there exist two sets of
linearly independent functions b(i) and c(i), i = 1, . . . , n − 1 such that
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C−1 = E +
n−1∑

i=1

b(i)(S − 1)−1c(i), E ∈ R.

Multiplying C on its left, we get

n−1∑

i=1

C(b(i))(S − 1)−1c(i) = 0

implying b(i) ∈ kerC.Note that for any b(i) ∈ kerC , i = 1, . . . , n−1, there exists d(i),

which is in ker B such that b(i) = (S − 1) d
(i)

a . Therefore, we have

B−1 = a(S − 1)−1C−1 = a(S − 1)−1

(
E +

n−1∑

i=1

(
(S − 1)

d(i)

a

)
(S − 1)−1c(i)

)
,

whose nonlocal terms are

a(S − 1)−1E†(1) +
n−1∑

i=1

(
d(i)(S − 1)−1c(i) − a(S − 1)−1 c

(i)d(i)
1

a1

)
,

where we used the identity

(S − 1)−1(d1 − d)(S − 1)−1 = d(S − 1)−1 − (S − 1)−1d1, d ∈ F.

This leads to the conclusion that B−1 is weakly nonlocal. �
We are now ready to prove the statement on the relation between the rational and weakly
nonlocal difference operators.

Theorem 1. Let R be a rational operator with minimal right fractional decomposition
AB−1 and OrdB = n. Then the following three statements are equivalent:

(i) The operator B has a full kernel in F;
(ii) The operator R is weakly nonlocal, that is, R = L +

∑n
i=1 p

(i)(S − 1)−1q(i),
where L ∈ R, and {p(i), i = 1, . . . , n} and {q(i), i = 1, . . . , n} are two linearly
independent sets over k in F;

(iii) The operator B† has a full kernel in F.

Proof. The statement (i) ⇒ (ii) directly follows from Proposition 7 since the multipli-
cation of a difference operator and a weakly nonlocal operator is weakly nonlocal.

We now prove that (ii) ⇒ (iii). Knowing

R = AB−1 = L +
n∑

i=1

p(i)(S − 1)−1q(i),

we multiply it on the right by B and obtain its nonlocal terms

n∑

i=1

p(i)
(
S − 1)−1B†(q(i)

)
= 0,

which implies that all q(i)’s are in the kernel of B† and thus n ≤ dim(ker B†).
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LetC be a commonmultiple of the difference operators 1
q(i) (S−1), that is, a difference

operator such that for all i there exists a difference operatorM (i) satisfyingC = 1
q(i) (S−

1)M (i). Thus we have

R = L +
n∑

i=1

p(i)(S − 1)−1q(i) = (LC +
n∑

i=1

p(i)M (i))C−1.

Since AB−1 is a minimal right fractional decomposition for R, there exists a difference
operator D such that

LC +
n∑

i=1

p(i)M (i) = AD and C = BD.

This leads to OrdC = n ≥ OrdB. Note that OrdB = OrdB† andOrdB† ≥ dim(ker B†).
Therefore, we have

OrdB† = dim(ker B†) = n

implying that B† has a full kernel spanned by all q(i)’s.
Finally we prove that (iii) ⇒ (i). It follows from Proposition 7 that the inverse of B†

is weakly nonlocal. Using the proof of (ii) ⇒ (iii), we obtain that statement of (i). �
From the proof of Theorem 1, we are able to specify the nonlocal terms for weakly
nonlocal operator.

Corollary 2. Under the condition of Theorem 1, for R = L +
∑n

i=1 p
(i)(S − 1)−1q(i),

the linearly independent functions p(i)’s span A(ker B) and the linearly independent
functions q(i)’s span ker B†, i = 1, . . . , n.

Following from this theorem, we are immediately able to get the statement for the
inverse of rational operator:

Corollary 3. Let R = AB−1 with A, B ∈ R. Then R−1 is weakly nonlocal if and only
if A has a full kernel in F.

Corollary 2 combined with Proposition 6 provides us with a method to write a weakly
nonlocal operator in the form of a rational operator R = AB−1: We first construct a full
kernel operator B† using q(i)’s. Then we have A = RB. We use such construction for
the examples in Sect. 6, where we will also apply Corollary 3 to the recursion operators
of integrable differential–difference equations to see whether their inverse operators are
weakly nonlocal or not. If so, we are going to compute the seeds for symmetry and
co–symmetry hierarchies (its nonlocal terms), that is, the p(i)’s and q(i)’s for R−1 in the
above theorem.

2.4. Matrix difference and rational pseudo–difference operators. We recall here some
facts from linear algebra over non-commutative rings and skew fields, which is a spe-
cialisation of the general theory [22,23] to the case of difference algebra (the ring R
and skew fieldQ). We denote byMn(R) andMn(Q) the rings of n × n matrices over
the ringR and skew fieldQ respectively. SinceR is a principal ideal ring, then the ring
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Mn(R) is also a principal ideal ring (see proof in [24], as well as the short and useful
review of non-commutative principal ideal rings [25]).

LetAi denote the i–th row of the matrixA andAi, j denote the (i, j) entry ofA. For
1 ≤ i 	= j ≤ n and arbitrary B ∈ R (or B ∈ Q) theR–elementary (resp.Q–elementary)
row operation τi, j (B) changes the row Ai �→ Ai + B · A j and leaves the other rows
unchanged. The transformation τi, j (B) is invertible (τi, j (B)τi, j (−B) = Id) and can
be represented by a multiplication from the left by the matrix τi, j (B) = I + BEi, j ,
where I is the unit matrix and Ei, j is the matrix with the (i, j) entry equal to 1 and zero
elsewhere. Note that the transformation σi, j = τi, j (1)τ j,i (−1)τi, j (1) replacesAi byA j
and A j by −Ai , leaving other rows unchanged.

R–elementary row operations generate a group En(R), which is a subgroup of the
group GLn(R) of invertible matrix difference operators. Similarly, Q–elementary row
operations generate a group En(Q), a subgroup of the groupGLn(Q) of invertiblematrix
pseudo–difference operators.

Lemma 2. LetA ∈ Mn(R). Then there exist two invertible matrices U and V such that
UAV is diagonal.

Proof. Let N be an element of the set E = {UAV|U ,V ∈ En(R)} such that for all
M ∈ E , either M11 = 0 or OrdN11 ≤ OrdM11. We claim that all entries in the
first column of N are divisible on the right by N11. Otherwise, using elementary row
operations which amounts to multiplyN on the left by an invertible matrix, one can find
M ∈ E such that M11 	= 0 and OrdM11 < OrdN11, which contradicts the definition
ofN . Similarly,N11 must divide all the entries of the first rowofN on the left. Therefore,
there exist invertible matrix difference operators U and V such that UNV has only zero
entries in its first row and first column, apart from the first coefficient which isN11. We
conclude by induction on n. �
Proposition 8. LetA ∈ Mn(R). Then it can be brought to a upper triangular formA�
with A�

i, j = 0 for i > j by R–elementary row operations and

A� = GA, G ∈ En(R).

Proof. We prove the claim by induction on n. If n = 1, the matrix is already in the form
required. Now we assume that any matrix from Mn−1(R) can be brought to a upper
triangular form byR–elementary row transformation. Therefore the first n − 1 rows of
matrix A can be brought to the upper triangular form.

(i) If An,1 = 0, then by deleting the first row and the first column of A we reduce the
problem to the case Mn−1(R) and we are done due to the induction hypothesis.

(ii) If A1,1 = 0, we use the transformation σ1,n to reduce the problem to the case (i).
(iii) The remaining case are A1,1 	= 0, An,1 	= 0. Suppose OrdAn,1 ≤ OrdA1,1

(otherwise, we can swap the rows by the transformation σ1,n). Then there exist
B, R ∈ R such that A1,1 = B · An,1 + R and either R = 0 or Ord R < OrdAn,1

and we apply the transformation τ1,n(−B) replacing A1 by Â1 = A1 − BAn . If
R = 0, then the updated row Â1 has zero entry Â1,1 = 0 and we are done (ii), or
Ord Â1,1 < OrdAn,1 and we use σ1,n to swap the rows. Iterating this procedure
we can make the entry (n, 1) vanish, reducing the problem to the first case (i). �

The ring Mn(R), n ≥ 2 has zero divisors. We will denote by M×
n (R) the multi-

plicative monoid of regular elements, i.e. the elements which are not zero divisors. A
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difference matrix operator A is regular if and only if its upper triangular form A� is
regular, i.e. if and only if

δετ(A�) := A�
1,1 · A�

2,2 · · ·A�
n,n 	= 0. (17)

Definition 5. The total order of a matrix difference operator A ∈ Mn(R) is defined
as the sum of total orders of the diagonal entries of a corresponding upper triangular
operator A�, i.e.

OrdA =
n∑

i=1

OrdA�
i,i = Ord δετ(A).

Proposition 9. A difference matrix operator A is invertible in Mn(R) (i.e. A−1 ∈
Mn(R) and thus A ∈ GLn(R)), if and only if OrdA = 0.

Proof. If OrdA = 0, then all entries on the diagonal part A�
d := diag((A�

1,1), . . . ,

(A�
n,n)) of A� have total order zero and thus invertible. Multiplying A� on the left by

matrix (A�
d )−1 we obtain an upper triangular matrix Ã� = (A�

d )−1GA with the unit
matrix on the diagonal. By induction on n it is easy to show that there is a composi-
tion of R–elementary row transformations G̃ such that G̃Ã� = I . If n = 1 there is
nothing to do. We assume the existence of the inverse matrix inMn−1(R). The entries
Ã�

k,n, k = 1, . . . , n − 1 of the last column can be set to zero by the transformation
∏n−1

k=1 τk,n(−Ã�
k,n) · Ã� which reduces the problem to the case in Mn−1(R). The ne-

cessity is obvious from the consideration of a diagonal matrix A. �
Example 1. Let us consider the following matrix difference operator

A =
(

1 S2

a−1S−1 a1S

)
, (18)

where a ∈ F, ak = Sk(a) and ai 	= a j if i 	= j . The transformation A �→ A� =
τ2,1(−a−1S−1)A brings A to an upper triangular form and δετ(A�) = (a1 − a−1)S.
Thus OrdA = 0 and the inverse matrix difference operator of A exists. Indeed,

A−1 =

⎛

⎜⎜⎜⎝

a2
a2 − a

− 1

a2 − a
S

− a−2

a − a−2
S−2 1

a − a−2
S−1

⎞

⎟⎟⎟⎠ .

If we use a different sequence of elementary row transformations

A �→ Ã� = τ1,2

(
− 1

a2
S

)
τ2,1

(
− a1a−1

a1 − a−1
S−1

)
A,

which also brings the difference matrix operator A to an upper triangular form, then
δετ(Ã�) = a1(a2−a)

a2
S, but the total order of A does not depend on the choice of the

sequence Ord A = Ord δετ(Ã�) = 0 (see below).
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The correctness ofDefinition 5, i.e. the independence ofOrdA from the choice of row
transformations, can be justified by the theory of Dieudonné determinants (
n) (in the
case of skew polynomial rings it has been discussed in [26]). The above definition of total
order for matrix difference operators is a restriction of the map Ord
n : Mn(Q) �→
Z ∪ {∞} to Ord
n : Mn(R) �→ Z≥0 ∪ {∞}. This observation results in a simpler way
to compute the total order of matrix difference operators by treating them as elements
ofMn(Q).

The Dieudonné determinant 
n is defined for matrices with entries in an arbitrary
skew field K (see [22,23,27]). In our case the skew field is K = Q and we are dealing
with matrix rational operatorsMn(Q), but what is presented below is equally applicable
to rational operators or any skew field of fraction of a left principal ideal domain. The
Dieudonné determinant is a map from Mn(Q) to Q̄ = Q×

�Q(1) or zero, where Q×
is the multiplicative group of nonzero elements ofQ, andQ(1) denotes the commutator
subgroup Q(1) = [Q×,Q×] ⊂ Q×, which is normal. The group Q(1) is generated by
elements of the form ABA−1B−1, A, B ∈ Q×. The quotient group Q̄ is commutative
and its elements are cosets AQ(1), A ∈ Q×. There is a natural projection π : Q× �→ Q̄
given by π(A) = Ā := AQ(1) for any A ∈ Q×.

Dieudonné has shown that En(Q) is a normal subgroup of GLn(Q) and that there is
a group isomorphism 
n : GLn(Q)�En(Q) �→ Q̄ given by a map 
n (Theorem 1. in
[27]), which is now called the Dieudonné determinant. The function
n : Mn(Q) �→ Q̄
is:

1. multiplicative: 
n(AB) = 
n(A)
n(B);
2. if A ∈ En(Q), then 
n(A) = 1̄;
3. if A′ is obtained from A by multiplying one row of A on the left by B ∈ Q, then


nA′ = B̄ · 
nA;
4. if a matrixA is degenerate (i.e. one row is a leftQ–linear combination of other rows),

then 
n(A) = 0.

In order to find 
nA for A ∈ Mn(Q) one can use the algorithm given by Dieudonné
[27] (see also §1, Ch. IV [22]), or use the Bruhat normal form approach (§20, Part III,
[23]). A simple way to find the Dieudonné determinant of a matrix A ∈ Mn(Q) is to
use a composition ofQ–elementary row transformations in order to bring the matrix A
to a upper triangular formA� = GA, G ∈ En(Q), then multiply the diagonal entries of
A� (in an arbitrary order) and apply the projection π to the result


n(A) = π

(
n∏

k=1

A�
k,k

)
.

It follows from [27] that 
n(A) does not depend on the choice of elementary row
transformations, neither on the order in the product of diagonal elements of A�.

It follows from Definition 1 and (15) that OrdP = 0 for any P ∈ Q(1), thus function
Ord has a constant value on a coset and the map

Ord : Q̄ �→ Z

is defined correctly.

Definition 6. The total order of a matrix rational operator A ∈ Mn(Q) is

OrdA := Ord
n(A).
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In the case of differenceoperatorsA ∈ Mn(R)wehavedefineda function δετ(A�) ∈
R (17). Although the value of this function depends on the choice of R–elementary
row transformations, its natural projection to Q̄ does not, since it coincides with the
Dieudonné determinant

π(δετ(A�)) = 
n(A).

This restriction of the total order definition to the ring of matrix difference operators
together with Proposition 9 results in the exact sequence of monoid homomorphisms
(similar to Theorem 1.1 in [26]):

1 �−→ GLn(R) �−→ Mn(R) �−→ Z≥0 ∪ {∞} �−→ 0 .

Definition 5 is a way to define the total order of a matrix difference operator, bypassing
the skew field of rational operators, its quotient group Q̄ and the theory of Dieudonné
determinants.

Note that the Dieudonné determinant and the total order of a matrix (rational) dif-
ference operator and the transposed matrix operator may not coincide. In the above
Example (18):


2(A) = π((a1 − a−1)S), 
2(Atr ) = 0.

A formally conjugatedmatrix (rational) difference operator has a usual definition, i.e.
the corresponding matrix is transposed and each entry is formally conjugated: (A†)i, j =
(A j,i )

†. For formally conjugated operators we have 
n(A†) = (
nA)† and therefore
OrdA† = OrdA.

There are many ways to represent a matrix rational operator as a ratio of matrix
difference operators. For example any L ∈ Mn(Q) can be represented as

L = Â · D−1 = Ã · M−1, D = diag(M1, . . . , Mn), Mk, M ∈ R\{0}.
Indeed, the entriesLi, j ∈ Q and thusLi, j = Ai, j B

−1
i, j , Ai, j , Bi, j ∈ R. Since the ringR

satisfies the Ore property (Proposition 2) there exists a least right common multiple Mi
of the elements B1,i , . . . Bn,i and therefore there exist P1,i , . . . Pn,i ∈ R such that Mi =
B1,i P1,i = · · · = Bn,i Pn,i . Taking Âi, j = Li, j Pi, j we obtain the first representation.
Let M be the least right common multiple of M1, . . . , Mn . There exist Q1, . . . Qn ∈ R
such that M = M1Q1 = · · · = MnQn , therefore Ã = Â · diag(Q1, . . . , Qn).

Since the ring of difference operators R is a principal ideal domain, the ring of
matrices Mn(R) satisfies the left and right Ore property (see proof in [24]) and thus

Mn(Q) ={AB−1|(A,B) ∈ Mn(R) × M×
n (R)}

={B−1A|(A,B) ∈ Mn(R) × M×
n (R)}.

A representation of matrix rational operators as right (left) fractions is not unique. How-
ever, once we clear the common right (resp. left) divisors, we get a minimal fraction, in
the following sense:

Theorem 2. For any L ∈ Mn(Q) there is a minimal right (resp. left) decomposition
L = AB−1 (resp. L = B̂−1Â) with A,B right (resp. Â, B̂ left) coprime. Any other
right decomposition L = A1B−1

1 (resp. left decomposition L = Â−1
1 B̂1) is of the from

A1 = A ·C, B1 = B ·C (resp. Â1 = C · Â, B1 = C · B̂), where C ∈ M×
n (R). Moreover

OrdB = Ord B̂ and is minimal possible among all decompositions.
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Proof. We will first prove by induction on n that if A and B are matrix difference
operators of size n × n with B regular, if M is a generator of the right ideal AMn(R) ∩
BMn(R) and N a greatest left common divisor of A and B, then OrdA + OrdB =
OrdM + OrdN .
It is true for n = 1 by Proposition 2. Let us now consider A and B of size n + 1.
Using invertible matrices we can assume that A and B are both upper triangular. Indeed,
one can factorize them as A = TAUA and B = TBUB with TA, TB upper triangular
and UA, UB invertible. Hence if there exist C and D such that TAD = TBC with
OrdD ≤ OrdTB = OrdB, then we can write A(U−1

A D) = B(U−1
B C). Let us consider

A and B in block matrix form:

A =
(
E X
0 P

)
, B =

(
F Y
0 Q

)
,

where E and F are of size n × n, P and Q are difference operators and X and Y have
size n × 1. First, let EG = FH be a generator of the right ideal EMn(R) ∩ FMn(R)

in Mn(R), P Q̂ = QP̂ be a generator of the right ideal PR ∩ QR in R and K be
a generator of the right ideal EMn(R) + FMn(R) in Mn(R) (which is also called
the greatest left common divisor of E and F). We have by the induction hypothesis
OrdK = OrdF −OrdG. One can find a difference operator R with OrdR ≤ OrdK and
a vector difference operator Z such that K Z = (Y P̂ − X Q̂)R. Indeed, by Lemma 2 one
can assume that K is a diagonal matrix diag(K0, . . . , Kn). Let us call by L0, . . . , Ln the
entries of the vector Y P̂−X Q̂. Then we can find for all i = 0, . . . n difference operators
Mi and Ni such that OrdNi ≤ OrdKi and KiMi = Li Ni . Let R be a generator of the
right ideal N0R ∩ · · · ∩ NnR. Then OrdR ≤ ∑n

i=0 OrdNi ≤ ∑n
i=0 OrdKi = OrdK

and there exists a vector Z such that K Z = LR. Finally, by definition of K there exist
two matrix difference operator V and W such that EV − FW = K . Let

C =
(
H W Z
0 P̂ R

)
, D =

(
G V Z
0 Q̂R

)
.

Then OrdD ≤ OrdB and AD = BC .
The proof of the remaining parts of the statement are identical to the scalar case, see

the proofs of Propositions 2 and 5. �
The inequality (16) is also true for a regular matrix difference operatorA ∈ M×

n (R)

and we say that A is a full kernel operator if DimkKerA = OrdA. Theorem 1, Corol-
lary 2 andCorollary 3 from the previous section are also true formatrix rational operators.

3. PreHamiltonian Pairs and Nijenhuis Operators

Zhiber and Sokolov, in their study of Liouville integrable hyperbolic equations [28], have
discovered a family of special differential operators with the property that they define a
new Lie bracket and are homomorphisms from the Lie algebra with the newly induced
bracket to the original Lie algebra. These operators can be viewed as a generalization
of Hamiltonian operators, although they are not necessarily skew–symmetric. Inspired
by the work of Zhiber and Sokolov, infinite sequences of such scalar differential oper-
ators of arbitrary order were constructed in [29] using symbolic representation [30,31].
Kiselev and van de Leur gave some examples of such matrix differential operators [32]
and investigated the geometric meaning of such operators. They named them preHamil-
tonian operators in [33] and defined the compatibility of two such operators. Recently,
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Carpentier renamed them as integrable pairs and investigated the interrelations between
such pairs and Nijenhuis operators [17]. In principle, many results for differential op-
erators also work for difference operators since R is a principal ideal domain. In this
section, we develop further the theory of preHamiltonian operators and extend it to the
difference case. Similarly to the previous section, we illustrate our results for the scalar
case.

Definition 7. A difference operator A is called preHamiltonian if Im A is a Lie subal-
gebra of (F, [•, •]), i.e. if

[ Im A, Im A] ⊆ Im A. (19)

By a direct computation, it is easy to see ([29]) that an operator A is preHamiltonian if
and only if there exists a 2-form on F denoted by ωA such that

A∗[Aa](b) − A∗[Ab](a) = AωA(a, b) for all a, b ∈ F. (20)

For a given a ∈ F, both ωA(a, •) and ωA(•, a) are inR, i.e. difference operators on F.
For a Hamiltonian operator H , the Jacobi identity is equivalent to (cf. [9])

[Ha, Hb] = H
(
b∗[Ha] + (Ha)†∗(b) − a∗[Hb] + a†∗(Hb)

)
, (21)

for all a, b ∈ F, where † is the adjoint of the operator. Clearly, Hamiltonian operators
are preHamiltonian with ωH (a, b) = (Ha)

†∗(b) + a†∗(Hb). We are going to explore the
relation between preHamiltonian pairs and Hamiltonian pairs in the forthcoming paper
[34]. Here we look at their relations with Nijenhuis operators.

Similarly to Hamiltonian operators, in general, the linear combination of two pre-
Hamiltonian operators is no longer preHamiltonian. This naturally leads to the following
definition:

Definition 8. We say that two difference operators A and B form a preHamiltonian pair
if A + λB is preHamiltonian for all constant λ ∈ k.

A preHamiltonian pair A and B implies the existence of 2-forms ωA, ωB and ωA+λB =
ωA + λωB . They satisfy

A∗[Ba](b) + B∗[Aa](b) − A∗[Bb](a) − B∗[Ab](a)

= AωB(a, b) + BωA(a, b) for all a, b ∈ F. (22)

Gel’fand and Dorfman [8] and Fuchssteiner and Fokas [10,11] discovered the relations
between Hamiltonian pairs and Nijenhuis operators. These pairs naturally generate Ni-
jenhuis operators. In what follows, we show that preHamiltonian pairs also give rise
to Nijenhuis operators. This also explains why we chose the terminology ‘preHamilto-
nian’ instead of ‘integrable’ for such operators. These operators naturally appear in the
description of the invariant evolutions of curvature flows [35].

Definition 9. A difference operator R is Nijenhuis if

[Ra, Rb] − R[Ra, b] − R[a, Rb] + R2[a, b] = 0 for all a, b ∈ F. (23)

Clearly, a Nijenhuis operator is also preHamiltonian with

ωR(a, b) = (Rb)∗[a] − (Ra)∗[b] − R[a, b].
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For a rational operator R = AB−1, which is defined on Im B, we define the Nijenhuis
identity as

A∗[Aa] − [(Aa)∗, A] + AB−1AB−1(B∗[Ba] − [(Ba)∗, B])
= AB−1(B∗[Aa] + A∗[Ba] − [(Aa)∗, B] − [(Ba)∗, A]) for all a ∈ F,

(24)

where the bracket denotes the commutator of two difference operators.

Theorem 3. If two difference operators A and B form a preHamiltonian pair, then
R = AB−1 is Nijenhuis.

Proof. Since A and B are preHamiltonian we can write for all a ∈ F

A∗[Aa] − [(Aa)∗, A] = A(ωA(a, •) + (Aa)∗ − a∗A);
B∗[Ba] − [(Ba)∗, B] = B(ωB(a, •) + (Ba)∗ − a∗B).

(25)

Hence, we see that, provided that A and B are preHamiltonians, (24) is equivalent to

AB−1 (BωA(a, •) + AωB(a, •) − B∗[Aa] − A∗[Ba]
+(Aa)∗B + (Ba)∗A − Aa∗B − Ba∗A) = 0,

(26)

where the expression inside the parentheses is nothing else than (22). Therefore, given
two preHamiltonians difference operators A and B, the ratio AB−1 is Nijenhuis if and
only if A and B form a preHamiltonian pair. �

Conversely, we have the following statement:

Theorem 4. Let R be a Nijenhuis rational difference operator with minimal decom-
position AB−1 such that B is preHamiltonian. Then A and B form a preHamiltonian
pair.

Proof. Since B is preHamiltonian, we have for all a ∈ F

B∗[Ba] − [(Ba)∗, B] = B(ωB(a, •) + (Ba)∗ − a∗B) (27)

Therefore, we can transform (24) into the equivalent form

A∗[Aa] − (Aa)∗A + Aa∗A
= AB−1(B∗[Aa] + A∗[Ba] + Ba∗A
+ Aa∗B − (Ba)∗A − (Aa)∗B − AωB(a, •)).

(28)

Let CA = DB be the left least common multiple of the pair A and B. It is also the right
least common multiple of the pair C and D since AB−1 is minimal. By Lemma 5 (i)
there exists a difference operator ωA(a, •) and thus 2–form ωA on F such that

A∗[Aa] − (Aa)∗A + Aa∗A = AωA(a, •);
B∗[Aa] + A∗[Ba] + Ba∗A + Aa∗B − (Ba)∗A − (Aa)∗B − AωB(a, •)

= BωA(a, •),

(29)

which implies that A and B form a preHamiltonian pair. �
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There is a simple algorithm to determine whether a given difference operator is
preHamiltonian and to find the corresponding 2–formω. Theorem 3 provides an efficient
method to check the Nijenhuis property for rational operators, which is important in the
theory of integrability.

Example 2. The operators A and B defined in (2) form a preHamiltonian pair. Thus the
recursion operator for the Volterra chain (1) is Nijenhuis.

Proof. Let C = A + λB. According to Definition 8, we check the existence of a 2-form
ωC in (20). By direct computation, we have

C∗[Ca](b) − C∗[Cb](a)

= u〈u1u2a3b2 + (u1 + u)u1a2b1 + (u + u−1)u−1a−1b + u−2u−1a−2b−1

+λu1a2b1 + λu−1a−1b〉Pa,b ,

where Pa,b stands for anti-symmetrisation with respect to ai ’s and b j ’s. We can now
compute its preimage ωC (a, b) by comparing its highest order either of a or b and we
get

ωC (a, b) = u(a1b − ab1) + u−1(ab−1 − a−1b).

It follows from Theorem 3 that the recursion operator R = AB−1 for the Volterra chain
(1) is Nijenhuis. �

The previous two theorems provide the interrelations between preHamiltonian pairs
andNijenhuis operators. The following theorem (analogous to its differential counterpart
in [17]) gives another motivation to the definition of a preHamiltonian pair: it is a nec-
essary condition for a rational operator R = AB−1 to ‘generate’ an infinite commuting
hierarchy.

Theorem 5. Let R be a rational operator with minimal decomposition R = AB−1.
Suppose that there exist ( f (n))n≥0 ∈ F spanning an infinite dimensional space over k
such that for all n ≥ 0, A( f (n)) = B( f (n+1)) and such that [B( f (n)), B( f (m))] = 0 for
all n,m ≥ 0. Then A and B form a preHamiltonian pair.

Proof. Since [B( f (m)), B( f (n))] = 0 for all m, n ≥ 0 by assumption, we have

(B∗[B( f (n+1))] − (B( f (n+1)))∗B)( f (m)) = B
(
−( f (m))∗[B( f (n+1))]

)
∀ m, n ≥ 0.

(30)
Similarly, replacing B with A we get for all n,m ≥ 0

(A∗[A( f (n))] − (A( f (n)))∗A)( f (m)) = A(−( f (m))∗[A( f (n))]). (31)

Let CA = DB be the left least common multiple of the pair A and B. A non-zero
difference operator has a finite dimensional kernel over k, therefore one must have for
all n ≥ 0 that

D(B∗[B( f (n+1))] − (B( f (n+1)))∗B) = C(A∗[A( f (n))] − (A( f (n)))∗A). (32)

Byminimality of the fraction AB−1, we deduce that for all n ≥ 0 there exists a difference
operator P(n) such that

B∗[B( f (n+1))] − (B( f (n+1)))∗B = BP(n),

A∗[A( f (n))] − (A( f (n)))∗A = AP(n).
(33)
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For all f ∈ F we can write B( f )∗ = B f∗ + (DB) f , where (DB) f is defined by
(DB) f (g) = B∗[g]( f ) for all g ∈ F. DB is a bidifference operator, i.e., (DB) f is a
difference operator and its coefficients are difference operators applied to f . In other
words (DB) f = PM ( f )SM + · · · PN ( f )SN for all f , where PM , . . . PN are differ-
ence operators. We can find a unique pair of bidifference operators Q and L such that
OrdL f < OrdB for all f and

B∗[B( f )] − (DB) f B = BQ f + L f . (34)

From (33) we see that L f (n) = 0 for all n ≥ 1. This implies that L = 0 since the f (n)

span an infinite dimensional space over k. Therefore, for all f, g, we have

B∗[B( f )](g) − B∗[B(g)]( f ) = BQ f (g)

implying that B is preHamiltonian. Finally, since for all constant λ, operator

R + λ = (A + λB)B−1

satisfies the same hypothesis as R, we conclude that A + λB is preHamiltonian. �

4. Towards Applications to Differential–Difference Equations

In this section we introduce some basic concepts for differential–difference equations
relevant to the contents of this paper. More details on the variational difference complex
and Lie derivatives can be found in [15,36].

Let u = (u1(n, t), . . . , uN (n, t)) be a vector function of a discrete variable n ∈ Z

and time variable t , where n and t are “independent variables” and u will play the role
of a “dependent” variable in an evolutionary differential–difference system

ut = f(up, . . . , uq), p ≤ q, p, q ∈ Z. (35)

The Eq. (35) is an abbreviated form to encode the infinite sequence of ordinary differ-
ential systems of equations

∂tu(n, t) = f(u(n + p, t), . . . , u(n + q, t)), n ∈ Z.

A vector function f is assumed to be a locally holomorphic function in its arguments.
In themajority of cases it will be a rational or polynomial functionwhich does not depend
explicitly on the variables n, t . The corresponding vector field coincides with (4). Thus
there is a bijection between evolutionary derivations of F and differential–difference
systems with f ∈ FN .

Definition 10. There are three equivalent definitions of symmetry of an evolutionary
equation. We say that g ∈ FN is a symmetry of (35) if

1. [g, f] = 0.
2. ûk = uk + εgk satisfy equation (35) mod ε2 whenever u is a solution.
3. Equation uτ = g is compatible with (35).
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Symmetries of an equation form aLie subalgebra inDer F. The existence of an infinite
dimensional commutative Lie algebra of symmetries is a characteristic property of an
integrable equation and it can be taken as a definition of integrability.

Often the symmetries of integrable equations can be generated by recursion operators
[2]. Roughly speaking, a recursion operator is a linear operator R : FN → FN mapping
a symmetry to a new symmetry. For an evolutionary Eq. (35), it satisfies

Rt = R∗[f] = [f∗, R]. (36)

Recursion operators for nonlinear integrable equations are often Nijenhuis operators.
Therefore, if the Nijenhuis operator R is a recursion operator of (35), the operator
R is also a recursion operator for each of the evolutionary equations in the hierarchy
ut = Rk(f), where k = 0, 1, 2, . . . .

Nijenhuis operators are closely related to Hamiltonian and symplectic operators. The
general framework in the context of difference variational complex and Lie derivatives
can be found in [15,36]. Here we recall the basic definitions related to Hamiltonian
systems.

For any element a ∈ F, we define an equivalent class (or a functional)
∫
a by saying

that two elements a, b ∈ F are equivalent if a−b ∈ Im(S−1). The space of functionals
is denoted by F′.

For any functional
∫
f ∈ F′ (simply written f ∈ F′ without confusion), we define its

difference variational derivative (Euler operator) denoted by δu f ∈ FN (here we identify
the dual space with itself) as

δu f = (
δu1 f, . . . , δuN f

)tr
, δul f =

∑

i∈Z
S−i ∂ f

∂uli
= ∂

∂ul

(
∑

i∈Z
S−i f

)
.

Definition 11. An evolutionary Eq. (35) is said to be a Hamiltonian equation if there
exists a Hamiltonian operator H and a Hamiltonian

∫
g ∈ F′ such that ut = Hδu

∫
g.

This is the same to say that the evolutionary vector field f is a Hamiltonian vector
field and thus the Hamiltonian operator is invariant along it, that is,

Ht = H∗[f] = f∗H + H f†∗ . (37)

Nijenhuis recursion operators for some integrable difference equations, e.g., the
Narita-Itoh-Bogoyavlensky lattice [37], are no longer weakly nonlocal, but rational dif-
ference operators of the form R = AB−1. The following statement tells us how operators
A and B are related to a given equation.

Theorem 6. If a rational difference operator R with minimal decomposition AB−1 is a
recursion operator for Eq. (35), then there exists a difference operator P such that

A∗[f] = f∗A + AP, B∗[f] = f∗B + BP. (38)

Proof. To say that AB−1 is a minimal decomposition of R means that A and B are right
coprime. Let C and D be two left coprime matrix operators with C regular such that
CA = DB. Such a pair exists by Lemma 5. Since R = AB−1 is a recursion operator of
(35), substituting it into (36) we have

Rt = R∗[f] = A∗[f]B−1 − AB−1B∗[f]B−1 = f∗AB−1 − AB−1f∗,



830 S. Carpentier, A. V. Mikhailov, J. P. Wang

that is,
(A∗[f] − f∗A) = AB−1 (B∗[f] − f∗B) . (39)

We rewrite (39) as

C (A∗[f] − f∗A) = D (B∗[f] − f∗B) .

By Lemma 5 there exists an operator P such that

A∗[f] − f∗A = AP, B∗[f] − f∗B = BP.

Thus the operators A and B satisfy the same relation (38). �
Comparing to (37), for Hamiltonian operators, we have P = f†∗ . Conversely, it can be
easy to show that

Proposition 10. For an Eq. (35) if there exist two operators A and B satisfying (38),
then R = AB−1 is a recursion operator for the equation.

Proof. By direct computation, we have

Rt = A∗[f]B−1 − AB−1B∗[f]B−1

= (f∗A + AP)B−1 − AB−1(f∗B + BP)B−1 = f∗R − Rf∗
satisfying (36). Thus R = AB−1 is a recursion operator. �
This proposition has been used in [38] in constructing recursion operators for integrable
noncommutative ODEs.

Example 3. For the operators A and B defined in (2) of the Volterra chain (1), the
difference operator P in Theorem 6 is P = (1 + S−1)u(1 − S).

In what follows, we give the conditions for a rational recursion operator R = AB−1

to generate infinitely many local commuting symmetries. We first prove the following
lemma:

Lemma 3. Assume that B is a preHamiltonian operator R = AB−1 with minimal de-
composition is a recursion operator for ut = B(g), where g ∈ FN . Then [B(g), A(g)] =
0.
In particular, if there exists h ∈ FN such that R is a recursion operator for ut = B(h)

and [B(g), A(h)] = 0, then [A(g), B(h)] = 0.

Proof. We know that B is preHamiltonian. So for any a ∈ FN , we have

B∗[Ba] − (Ba)∗B = B(ωB(a, •) − a∗B). (40)

From Theorem 6, it follows, when a = g or a = h, that

A∗[Ba] − (Ba)∗A = A(ωB(a, •) − a∗B). (41)

Using (41) for a = g, we get

[B(g), A(g)] = A∗[B(g)](g) + Ag∗[B(g)] − (Bg)∗[Ag] = A(ωB(g, g)) = 0.

If there exists h ∈ FN such that R is a recursion operator for ut = B(h) then from the
former we deduce that

[B(g + h), A(g + h)] = [B(g), A(g)] = [B(h), A(h)] = 0. (42)

Hence [B(h), A(g)] = −[B(g), A(h)]. �
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Proposition 11. Assume that A and B form a preHamiltonian pair and R = AB−1 is
a recursion operator for ut = B(g(0)), where g(0) ∈ FN . If there exists g(n) ∈ FN such
that A(g(n)) = B(g(n+1)) for all n ≥ 0, then [B(g(n)), B(g(m))] = 0 for all n,m ≥ 0.

Proof. We can assume that AB−1 is a minimal decomposition of R. Indeed, if not we
write A = A0C and B = B0C where R = A0B

−1
0 is minimal and replace g(n) by

C(g(n)). By Theorem 3, we know that R is Nijenhuis and thus it is a recursion operator
for all B(g(n)), n ≥ 0. We proceed the proof by induction on |n − m|. If n = m
there is nothing to prove. If |n − m| = 1, we deduce [B(g(n)), B(g(n+1))] = 0 as
a direct application of Lemma 3 since B(g(n+1)) = A(g(n)) for all n ≥ 0. Suppose
that [B(g(n)), B(g(m))] = 0 for all n,m ≥ 0 such that |n − m| ≤ N , which implies
[B(g(n+N ), B(g(n+1))] = 0. Hence by Lemma 3, we have [B(g(n+N+1), B(g(n))] = 0.

�

5. Rational Recursion Operator for Adler–Postnikov Equation

In this section, we construct a recursion operator of system

ut = u2(u2u1 − u−1u−2) − u(u1 − u−1) := f (43)

from its Lax representation and show that it is Nijenhuis and generates local commut-
ing symmetries. In general, it is not easy to construct a recursion operator for a given
integrable equation although the explicit formula is given. The difficulty lies in how to
determine the starting terms of R, i.e., the order of the operator, and how to construct its
nonlocal terms. Many papers are devoted to this subject, see [5,39,40]. If the Lax repre-
sentation of the equation is known, there is an amazingly simple approach to construct
a recursion operator proposed in [41]. The idea in [41] can be developed for the Lax
pairs that are invariant under the reduction groups, which applies for both differential
and differential–difference equations [7,37].

The Eq. (43) first appeared in [18], where the authors presented its scalar Lax repre-
sentation. We rewrite it in the matrix form as follows:

L = S − U(λ) = S − λU(1) − U(0) = S −
⎛

⎝
0 1 0
0 0 1
λ − 1

u
λ
u

⎞

⎠ (44)

M = Dt − V(λ) = Dt +

⎛

⎝
− 1

λ2
+ u−1

1
λ
(1 − u−1u−2) u−1u−2 − u−1

λ2

λuu−1 − u
λ

u − u−1 λu−1 − uu−1
λ

λ2u − uu1 λ(uu1 − 1) λ2 − u

⎞

⎠ , (45)

where λ is a spectral parameter. The commutativity of the above operators leads to the
zero curvature condition

U(λ)t = SV(λ)S−1U(λ) − U(λ)V(λ) (46)

and subsequently it leads to the system (43). The system (43) defines a derivation X f ∈
A1 ofR with f = u2(u2u1 − u−1u−2) − u(u1 − u−1). The representation (44), (45) is
invariant with respect to the transformations:

SV(λ)S−1 = −JT V(λ−1)T J, U−1(λ) = JT U(λ−1)T J (47)



832 S. Carpentier, A. V. Mikhailov, J. P. Wang

and
V(λ) = HV(−λ)H, U(λ) = −HU(−λ)H, (48)

where

J =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ , H =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ .

The transformation (47) reflects the symmetry T ( f ) = − f of the Eq. (43).
For a given matrix U, we can build up a hierarchy of nonlinear systems by choosing

differentmatricesVwith the degree of λ from−2l to 2l. Theway to construct a recursion
operator directly from a Lax representation is to relate the different operators V using
ansatz

V̄ = (λ−2 + λ2)V + W

and then to find the relation between the two flows corresponding to V̄ and V. The multi-
plier λ−2 +λ2 is the automorphic function of the group generated by the transformations
λ �→ λ−1 and λ �→ −λ. Here W is the remainder and we assume that it has the same
symmetry as V:

W =
2∑

j=−2

λ jW( j), (49)

where W( j) are 3 × 3 matrices of the following form [invariant under (48)]

W(2) =
⎛

⎝
a 0 b
0 c 0
d 0 e

⎞

⎠ ; W(0) =
⎛

⎝
a0 0 b0
0 c0 0
d0 0 e0

⎞

⎠ ; W(−2) =
⎛

⎝
a− 0 b−
0 c− 0
d− 0 e−

⎞

⎠ ;

W(1) =
⎛

⎝
0 r 0
s 0 p
0 q 0

⎞

⎠ ; W(−1) =
⎛

⎝
0 r− 0
s− 0 p−
0 q− 0

⎞

⎠

and since W is invariant under (47), they satisfy

S(W(2)) = −JT (W(−2))J ; S(W(1)) = −JT (W(−1))J ;
S(W(0)) = −JT (W(0))J.

The zero curvature condition leads to

Uτ =
(

1
λ2

+ λ2
)

Ut + S(W)U − UW. (50)

Substituting the ansatz (49) into (50) and collecting the coefficient of powers of λ,
we obtain six matrix equations for W( j), j = −2, . . . , 2. For example, the equation
corresponding to linear terms of λ is

U(1)
τ = S(W(1))U(0) + S(W(0))U(1) − U(1)W(0) − U(0)W(1). (51)
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Through them we are able to determine the entries of matrices W( j) and we finally get

c− = (S2 − 1)−1 ut
u

;
b0 = S−1u(Su − uS−1)−1

(
u(S − S−2)u(S2 + S + 1) + S2 − S

)
c−;

e0 = (S2 + S + 1)−1
(

−
(
S 1

u
S +

1

u
S + S 1

u

)
Sb0 + (S + 1)

1

u
(S2 − S)c−

)
;

uτ = u2(S3 − 1)b0 − u(uS − S−1u)(S2 + S + 1)c− + u(S − 1)e0. (52)

Note that

S 1

u
Su +

1

u
Su + S = (S + 1)

1

u
(Su − uS−1) + S−1 + 1 + S.

We simplify the above expression of e0. It becomes

e0 = (S−2 − 1)u(S2 + S + 1)c− − S−1(Su − uS−1)−1

(
u(S − S−2)u(S2 + S + 1) + S2 − S

)
c−

Substituting c−, b0 and e0 into (52), we obtain the relation between two symmetry
flows ut and uτ . Thus we obtain the following statement:

Proposition 12. A recursion operator for Eq. (43) is

R = u
(
u(S2−S−1)u + S−1−1

)
(Su−uS−1)−1

(
u(S−S−2)u(S2 + S + 1) + S2−S

)
(S2−1)−11

u

+u(2S−1u − S−2u − Su + u − uS)(S2 + S + 1)(S2 − 1)−1 1

u
. (53)

We represent R as

R = R(3) + R(1) + R(−1),

where

R(3) = u2(S3 − 1)S−1u(Su − uS−1)−1u(S − S−2)u(S2 + S + 1)(S2 − 1)−1 1

u
;

R(−1) = u(S−1 − 1)(Su − uS−1)−1(S−1 + 1)−1 1

u
.

Note that R(3) is a recursion operator for ut = u2(u1u2 − u−1u−2) [37] and that R(−1)

is the inverse recursion operator for the Volterra chain ut = u(u1 − u−1) [20].
The recursion operator (53) is not weakly nonlocal. We now rewrite it as a rational

difference operator. It is convenient to first write R as

R =
(
Q
−1C + P

)
(S2 − 1)−1 1

u
, (54)
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where

Q = u
(
uu1 − 1 + (1 − uu−1)S

−1
)

; 
 = Su − uS−1; (55)

C = w2S2 − w−1S, w = 1 − u−1u1; (56)

P =
(
u2Su(S − S−2)u

+Qu−1 + u(2S−1u − S−2u − Su + u − uS)
)

(S2 + S + 1)

+u2S(S2 − S) + Q(u−1S−1 + u2S) = P̃(S + 1) + p; (57)

where P̃ is a difference operator and p = u(u2 + 2u1 − 2u−1 − u−2).

Lemma 4. The recursion operator R given by (54) can be factorized as R = AB−1

with
B = u(S − S−1)(Sα + β + S−1γ ), (58)

where

α = u−1uw−1w − u−1u1w1w2; β = u2w2 − u−1u1w−2w2;
γ = u1uw1w − u−1u1w−1w−2; w = 1 − u−1u1.

and

A = Q

(
1

u
w1α1S +

1

u1
wγ

)
+ PS−1

(
Sα + β + S−1γ

)
. (59)

Proof. To find A and B for (54) we need to rewrite 
−1C as a right fraction. It turns
out that

CS−1
(
Sα + β + S−1γ

)
= 


(
1

u
w1α1S +

1

u1
wγ

)
,

from which we can find that α, β and γ as stated is a solution. Then A = RB by
definition as given in the statement. �
The authors in [42] showed that the recursion operators derived from certain Lax repre-
sentations under certain boundary conditions are Nijenhuis once every step is uniquely
determined. Here we prove the Nijenhuis property using the results in Sect. 3.

Theorem 7. The operators A and B defined by (59) and (58) are compatible preHamil-
tonian operators. In particular, the recursion operator R for Eq. (43) given by (53) is
Nijenhuis.

Proof. We know from Lemma 4 that R = AB−1. To prove that it is Nijenhuis, we only
need to show operators A and B form a preHamiltonian pair following from Theorem 3.

Let I = A + λB. For any a, b ∈ F and constant λ, we use computer algebra package
Maple to compute e(0) = I∗[I a](b) − I∗[I b](a), which is linear in a and its shifts. We
take the coefficient of the highest order term ak (here k = 11) in e(0) and denote it by v(0).

Notice that the highest order term in I is u2u1u2S4α. We set ω(0) = 1
α
S−4(

v(0)ak
u2u1u2

). We

then compute e(1) = e(0) − I (ω(0)) and repeat the procedure. Finally we get e(11) = 0
after n = 11 steps implying I is preHamiltonian. �
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Since the operator R is not weakly nonlocal, the results on the locality of symmetries
generated by R in [7] are no longer valid. In the rest of this section, we are going to
show that R generates infinitely many commuting symmetries of (43) starting from the
equation itself.

Proposition 13. Let h be a difference polynomial such that R is a recursion operator
for ut = h. Then h lies in the image of B. More precisely h = B(x) for some x ∈ F and
A(x) is a difference polynomial. Moreover, R is a recursion operator for ut = A(x).

We will break the proof of this proposition in two parts using (54). First we will
prove that h = u(g2 − g) for some difference polynomial g. Second we will show that
C(g) = 
(k) for some difference polynomial k. We begin with proving a few lemmas.
To improve the readability, we put them in “Appendix B”. We now write the proof for
Proposition 13 using these lemmas.

Proof. By Lemma 8, we know that h = u(g2 − g) for some difference polynomial h.
By Lemmas 9 and 10, for some constant λ ∈ k we get that

C(g)∗u(S2 − 1) − C(g)(S2 − S) ≡ λC.

Since g is a difference polynomial, the constant term in C(g)∗u(S2 − 1) − C(g)(S2 −
S) − λC is λ(S − S2). This constant term must be divisible on the left by 
, which
implies λ = 0. Moreover, we can divide the congruence relation by (S2− S) on the right
since 
 has a trivial kernel:

C(g)∗u(1 + S−1) ≡ C(g).

After applying Lemma 11 we deduce that C(g) = 
(k) for some difference polynomial
k.

Let M be a generator of the right ideal CR∩
R inR. This means that M = CE =

D for some pair of right coprime difference operators D and E . By Lemma 1, there
exists x ∈ F such that g = E(x) and k = D(x). Since B = u(S2 − 1)E , we conclude
that h = B(x). Finally, A = QD + PE , hence A(x) = P(g) + Q(k) is a difference
polynomial. R is a recursion operator for ut = A(x) since R is Nijenhuis following
from Theorem 7. �
Theorem 8. There exists a sequence g(2), g(4), g(6), . . . in F such that

(1) u2(u1u2 − u−1u−2) − u(u1 − u−1) = B(g(2));
(2) A(g(2n)) = B(g(2n+2)) for all n ≥ 1;
(3) B(g(2n)) is a difference polynomial for all n ≥ 1;
(4) [B(g(2n)), B(g(2m))] = 0 for all n,m ≥ 1;
(5) The order of B(g(2n)) is (−2n, 2n);
(6) R is a recursion operator for all the ut = B(g(2n)).

Finally, let V = Spank{B(g(2n))|n ≥ 1}. If f ∈ F commutes with some element h ∈ V ,
then f ∈ V .

Proof. We already know that R is a recursion operator for (43), hence by Proposition 13
there exists g(2) ∈ F such that statement (1) is satisfied and A(g(2)) is a difference
polynomial. Since R is Nijenhuis (following from Theorem 7) it must be a recursion
operator for ut = A(g(2)) as well. Using Proposition 13 a second time we find g(4) ∈
F such that B(g(4)) = A(g(2)) and A(g(4)) is a difference polynomial. Iterating this
argumentweprove the statements (2), (3) and (6). Statement (5) is obvious and statement
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(4) follows from Proposition 11 and Theorem 7. Finally, if f ∈ F commutes with h ∈ V ,
let us sketch the proof of how to show that f ∈ V . If (M, N ) is the order of f and N > 0
it is not hard to prove from the equation

Xh( f∗) = [h∗, f∗] + X f (h∗). (60)

Note that the leading term of f∗ is up to multiplication by a constant the leading term
of B(g(2k))∗ for some k ≥ 2. Similarly, if M < 0, one sees that the negative leading
term of f∗ is up to multiplication by a constant the negative leading term of B(g(2l))∗
for some l ≥ 2. We conclude by induction on the total order of f , after checking that
the only f commuting with an element of V and which depend either on u, . . . , uN or
on u−N , . . . , 0 for N ≥ 0 is f = 0. �
Remark 3. Note that g(2) = u−1uu1w−1ww1

αγ
is in F but is not a difference polynomial.

Remark 4. Let T be the automorphism of K defined in Sect. 2. Then we have T AT =
−A andT BT = −B.This implies thatT (B(g(2n))) = −B(g(2n)) andT (g(2n)) = g(2n)

for all n ≥ 1.

6. On Inverse Nijenhuis Recursion Operators

In [20], the authors listed integrable differential–difference equationswith their algebraic
properties. For some systems, they presented both recursion operators and their inverse
in weakly nonlocal form. In this section, we’ll explain the (non)existence of weakly
nonlocal inverse recursion operators and how to work out the nonlocal terms based on
Theorem 1 and its corollaries in Sect. 2.3 using examples in [20].

We select four examples: in Sect. 6.1, we show the nonexistence of weakly nonlocal
inverse recursion operator for the Toda lattice; in Sect. 6.2, we show the existence of
weakly nonlocal inverse recursion operator with only one nonlocal term for a relativistic
Toda system; in Sect. 6.3, we deal with a recursion operator with two nonlocal terms;
for our last example, we demonstrate that the inverse operator R itself is not weakly
nonlocal, but that of R − id is!

6.1. The Toda lattice. The Toda equation [43] is given by

qtt = exp(q1 − q) − exp(q − q−1).

In the Manakov-Flaschka coordinates [44,45] defined by u = exp(q1 − q), v = qt , it
can be rewritten as two-component evolution system:

{
ut = u(v1 − v)

vt = u − u−1
, (61)

which admits two compatible Hamiltonian local structures

H1 =
(

0 u(S − 1)
(1 − S−1)u 0

)
, H2 =

(
u(S − S−1)u u(S − 1)v
v(1 − S−1)u uS − S−1u

)
.

It is clear to see that OrdH1 = 2 and that the kernel of H1 is spanned by

(
1
u
0

)
and

(
0
1

)
.

One can check that the kernel of H2 is spanned by

(
1
u
0

)
. In other words, H1 and H2 have



Rational Recursion Operators for Integrable Differential–Difference Equations 837

a common right divisor C of the total order being 1 and can be written as H1 = BC and
H2 = AC , where OrdB = 1 and OrdA = 3, that is,

H1 = BC =
(
0 u(1 − S)

1 0

) (
(1 − S−1)u 0

0 1

)
;

H2 = AC =
(
u(S + 1) u(S − 1)v

v uS − S−1u

)(
(1 − S−1)u 0

0 1

)
.

Thus B has full kernel and A has trivial kernel. Thus the recursion operator

R = H2H
−1
1 = AB−1

is weakly nonlocal but BA−1 is not. Indeed,

R =
(

v1 uS + u
1 + S−1 v

)
+

(
u(v1 − v)

u − u−1

)
(S − 1)−1 ( 1

u 0
)
.

6.2. A relativistic Toda system . The relativistic Toda system [46] is given by

qtt = qtq−1t
exp(q−1 − q)

1 + exp(q−1 − q)
− qtq1t

exp(q − q1)

1 + exp(q − q1)
.

Introducing the dependent variables as follows [47]:

u = qt exp(q − q1)

1 + exp(q − q1)
, v = qt

1 + exp(q − q1)
,

then the equation can be written as

{
ut = u(u−1 − u1 + v − v1)

vt = v(u−1 − u).

It admits two compatible Hamiltonian local structures

H1 =
(

0 u(1 − S)

(S−1 − 1)u uS − S−1u

)
, H2 =

(
u(S−1 − S)u u(1 − S)v

v(S−1 − 1)u 0

)
.

It is clear to see that OrdH1 = 2 and that the kernel of H1 is spanned by

(
1
u
0

)
and

(
1
1

)
.

Similarly OrdH2 = 2 and the kernel of H2 is spanned by

(
1
u
0

)
and

(
0
1
v

)
. In other words,

H1 and H2 have a common right divisor OrdC = 1 and can be written as

H1 = BC =
(
0 u(1 − S)

1 uS − S−1u

) (
(1 − S−1)u 0

0 1

)
;

H2 = AC =
(
u(S + 1) u(1 − S)v

−v 0

) (
(1 − S−1)u 0

0 1

)
,
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where A and B are of the total order 1 and their kernels are of dimension 1 Therefore
both recursion operator R = AB−1 and its inverse R−1 = BA−1 are weakly nonlocal,
and

R =
(
uS + u + v1 + u1 + uS−1 uS + u

v + vS−1 v

)
−

(
ut
vt

)
(S − 1)−1 ( 1

u 0
) ;

R−1 =
( 1

v1
− u

v21
S + u

v2
− 2u

vv1

−S−1 1
v

− 1
v1

u
v21
S + S−1 u

v2
+ 2u

vv1
+ 1

v

)
+

( u
v1

− u
v

u−1
v−1

− u
v1

)
(S − 1)−1 ( 1

u − 2
v

)
.

Note that the kernel of A is spannedby

(
0
1
v

)
, the kernel of A† is spannedby

( 1
u− 2
v

)
and

B

(
0
1
v

)
=

( u
v

− u
v1

u
v1

− u−1
v−1

)
. This explains the nonlocal term in the inverse of the recursion

operator.

6.3. The Ablowitz–Ladik lattice. Consider the Ablowitz–Ladik lattice [19]
{
ut = (1 − uv)(αu1 − βu−1)

vt = (1 − uv)(βv1 − αv−1).

Its recursion operator [48]

R =
(

(1 − uv) S − u1v − uv−1 −uu1
vv−1 (1 − uv) S−1

)
+

(−u
v

)
(S − 1)−1 (

v−1 u1
)

−
(

(1 − uv)u1
−(1 − uv)v−1

)
(S − 1)−1 ( v

1−uv
u

1−uv

)
(62)

can be written as R = AB−1, where by letting w = 1 − uv, wi = S iw and p =
u1v − uv−1 we have

A =
⎛

⎝ wS
(
uv
v1

− u1
)
+ u1vw

v1
− uv−1w1

v1
wS u

p (1 − S−1) − u2v−1
p + uu1v

p S−1

wS−1(v−1 − v2

v1
) − u1vv−1 +

uv2v−1
v1

−wS−1 v
p (1 − S−1) + uvv−1

p − u1v2

p S−1

⎞

⎠

and

B =
(

w
v
S−1 p − u1w + uvw1

v1

u
p (1 − S−1)

v−1w − v2w1
v1

− v
p (1 − S−1)

)
.

The operator A can be factorized as follows:

(
1 0

(v−2v − v2−1)wrS−1 r

)

(
q(u1vw−uv−1w1)

(uv−u1v1)
− w

(v−1v1w1−v2w)
S − u1vw−uv−1w1

(uv−u1v1)(v−2vw−v2−1w−1)

0 1

)
D,
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where

r = 1

uv−1w−1 − u−1v−2w
; q = 1

(v−1v1w1 − v2w)(v−2vw − v2−1w−1)
;

D=

⎛

⎜⎜⎜⎜⎜⎝

0
v−1w(v−1v1w1 − v2w)S−2

−vw(v−2v1w1 − v−1vw−1)S−1

+v1w(v−2vw − v2−1w−1)

1
v1

(u1v1 − uv)(v−2vw − v2−1w−1)
v−1wS−2 + (uv−2w − u1v−1w−1)

v
pS−1

+(v2−1w−1 − v−2vw) up

⎞

⎟⎟⎟⎟⎟⎠
.

Note that OrdA = OrdD = 2 and ker D = ker A, which is spanned by

h(1) =
(

− 1
u1v−uv−1

v
v1

)
and h(2) =

( uv1
u1v−uv−1

u1v1 − 1

)
.

Thus the operator A is a full kernel operator and hence the inverse of AB−1 is weakly
nonlocal. Note that ker D† is spanned by

g(1) =
(

vq
0

)
=

(
v

(v−2vw−v2−1w1)(v−1v1w1−v2w)

0

)
and

g(2) =
(− v−1q

w
0

)
.

Thus ker A† is spanned by

(
1 Sw(v2−1 − v−2v)

0 1
r

) ( (uv−u1v1)
q(u1vw−uv−1w1)

0

S−1 w(uv−u1v1)(v−2vw−v2−1w−1)

u1vw−uv−1w1
+ v−1v1w1 − v2w 1

)
g(1)

=
(

v1
u−1

)

and similarly

( v
1−uv
u

1−uv

)
. Moreover, we have

B(h(1)) =
(

u
−v

)
; B(h(2)) =

(
(1 − uv)u−1
−(1 − uv)v1

)
.

These give us the nonlocal term appearing in the inverse operator as stated in Theorem 1,
and indeed

R−1 =
(

(1 − uv) S−1 uu−1
−vv1 (1 − uv) S − uv1 − u−1v

)

+

(
u

−v

)
(S − 1)−1 (

v1 u−1
)

+

(
(1 − uv)u−1
−(1 − uv)v1

)
(S − 1)−1 ( v

1−uv
u

1−uv

)
.
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6.4. The Kaup–Newell lattice. Consider the Kaup–Newell lattice [49]:
⎧
⎨

⎩
ut = a

(
u1

1−u1v1
− u

1−uv

)
+ b

(
u

1+uv1
− u−1

1+u−1v

)

vt = a
(

v
1−uv

− v−1
1−u−1v−1

)
+ b

(
v1

1+uv1
− v

1+u−1v

) := aK1 + bK−1.

Its recursion operator

R =
⎛

⎝− 1
(1−u1v1)2

S + 1
(1−uv)2

− 2u1v
(1−u1v1)(1−uv)

− u21
(1−u1v1)2

S+ u2

(1−uv)2
− 2uu1

(1−uv)(1−u1v1)

− v2−1
(1−u−1v−1)2

S−1 − v2

(1−uv)2
− 1

(1−u−1v−1)2
S−1 + 1−2uv

(1−uv)2

⎞

⎠

−2K1(S − 1)−1 ( v
1−uv

u
1−uv

)
,

can be written as R = AB−1, where

A =
(

(S − 1) 1
v(1−uv)

(1 − S−1) + 2(S − 1) u
1−uv

S−1 (S − 1) u
1−uv

(1 − S−1) v
1−uv

(S−1 + 1) (1 − S−1) v
1−uv

)

=
(
S − 1 0
0 1 − S−1

)( u
1−uv

0
0 v

1−uv

) (
2 − 1

uv
1

1 1

) (
S−1 − 1 0

2 1

)

and

B =
(

1−uv
v

(S−1 − 1) −u
0 v

)
.

The operator A does not have a full kernel since OrdA = 3 and its kernel is spanned by(
1

−2

)
. Surprisingly, operator C = A − B can be factorised as follows:

(
1 1

v21
S

0 1

)(
1 0

(uv − S−1)
v21

1−u2v21
1

)(
1+uv1

v21(1−uv)
0

0 1

)
D,

where

D =
(

(v − 2v1 + uvv1) + v(1 − uv1)S−1 v(1 − u2v21)
v(1 − S−1) 1+uv1

1−uv1
0

)
.

Note that OrdC = OrdD = 1 and ker D = kerC , which is spanned by h =(
1−uv1
1+uv1

2v1
v(1+uv1)

− 2
(1+u−1v)

)
. Thus operator C is a full kernel operator and hence the inverse

of (A − B)B−1 is weakly nonlocal as presented in [20] and it equals to

(R − id)−1 =
⎛

⎜⎝
1

(1+u−1v)2
S−1 − 1+2uv1

(1+uv1)2
− u2

(1+uv1)2
S +

u2−1
(1+u−1v)2

− 2uu−1
(1+u−1v)(1+uv1)

− v2

(1+u−1v)2
S−1 − v21

(1+uv1)2
1

(1+uv1)2
S − 1

(1+u−1v)2
− 2u−1v1

(1+u−1v)(1+uv1)

⎞

⎟⎠

−2K−1(S − 1)−1
(

v1
1+uv1

u−1
1+u−1v

)
. (63)
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Note that ker D† is spanned by

(
0
1
v

)
and thus kerC† is spanned by

(
1 0

−S−1 1
v21

1

)(
1 − v21

1−u2v21
(uv − S)

0 1

)(
v21(1−uv)

1+uv1
0

0 1

)(
0
1
v

)
=

( v1
1+uv1u−1
1+u−1v

)
.

Moreover, we have

B(h) = 2

(
u

1+uv1
− u−1

1+u−1v
v1

1+uv1
− v

1+u−1v

)
= 2K−1.

These give us the nonlocal term appearing in the inverse operator as shown in (63).

7. Conclusions

In this paper we have built a rigorous algebraic setting for difference and rational
(pseudo–difference) operators with coefficients in a difference field F and study their
properties. In particular, we formulate a criteria for a rational operator to be weakly
nonlocal. We have defined and studied preHamiltonian pairs, which is a generalization
of the well known bi-Hamiltonian structures in the theory of integrable systems. By
definition a preHamiltonian operator is an operator whose images form a Lie subalgebra
in the Lie algebra of evolutionary derivations of F. The latter can be directly verified and
it is a relatively simple problem comparing to the verification of the Jacobi identity for
Hamiltonian operators. We have shown that a recursion Nijenhuis operator is a ratio of
difference operators from a preHamiltonian pair. Thus for a given rational operator, to
test whether it is Nijenhuis or not can be done systematically. We applied our theoretical
results to integrable differential difference equations in two aspects:

• We have constructed a rational recursion operator R (53) for Adler–Postnikov in-
tegrable Eq. (43) and shown that it can be written as the ratio of a preHamiltonian
pair and thus it is Nijenhuis. Moreover, we proved that R produces infinitely many
commuting local symmetries;

• For a given recursion operator we can answer the question whether the inverse
operator is weakly nonlocal and, if so, how to bring it to the standard weakly nonlocal
from (examples in Section 6).

In Sect. 6.4 we show that for a weakly nonlocal recursion operator R which does not
have a weakly nonlocal inverse, may exist a constant γ ∈ k such that (R − γ id)−1 is
weakly nonlocal. In other words, the total order of the difference operator A − γ B in
the factorisation R = AB−1 may be lower for a certain choice of γ . This observation
requires further investigation.

The concept of preHamiltonian operators deserves further attention. These operators
naturally appear in the description of the invariant evolutions of curvature flows in
homogeneous spaces in both continuous [50] and discrete [35] setting. In the future,
we’ll look into the geometric implication of such operators.

In this paper, we mainly explored the relation between PreHamiltonian operators
and Nijenhuis operators. We are going to investigate how preHamiltonian pairs relate
to biHamiltonian pairs. In our forthcoming paper [34], we’ll present the following main
result: if H is a Hamiltonian (a priori nonlocal, i.e. rational) operator, then to find a
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second Hamiltonian K compatible with H is the same as to find a preHamiltonian pair
A and B such that AB−1H is skew-symmetric.

We have discovered that Adler–Postnikov integrable equation (43) is indeed a Hamil-
tonian system. This equation can be written as ut = Hδu(ln u), where H is the following
skew-symmetric rational operator

H = u2u1u
2
2S2 − S−2u2u1u

2
2 + S−1uu1(u + u1) − uu1(u + u1)S

+ u(1 − S−1)(1 − uu1)(Su − uS−1)−1(1 − uu1)(S − 1)u.

In [34], we are going to show that H is a Hamiltonian operator for Eq. (43) and explain
how it is related to the recursion operator (53).
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Appendix A. Basic Concepts for a Unital Associative Principal Ideal Ring

Recall the definitions of some basic concepts for a unital associative ring R (see for
example [25]).

A left (respectively right) ideal ofR is an additive subgroup I ⊂ R such thatRI = I
(resp. IR = I).

A left (resp. right) principal ideals generated by a ∈ R is, by definition, Ra (resp.
aR).

A ring is called a principal ideal ring, if every left and right ideal of the ring is
principal. In what follows we assume that the ring R is both a left and a right principal
ideal ring, meaning that every left ideal of R and every right ideal of R is principal.

Given an element a ∈ R, an element d is called a right (resp. left) divisor of a if
a = bd (resp. a = db) for some b ∈ R. An element m ∈ R is called left (resp. right)
multiple of a if m = ba (resp. m = ab) for some b ∈ R.

Given elements a, b ∈ R, their right (resp. left) greatest common divisor (gcd) is the
generator d of the left (resp. right) ideal generated by a and b: Ra +Rb = Rd (resp.
aR + bR = dR). It is uniquely defined up to multiplication by an invertible element.
It follows that d is a right (resp. left) divisor of both a and b, and we have the Bezout
identity d = ua + vb (resp. d = au + bv) for some u, v ∈ R.

Similarly, the left (resp. right) least common multiple (lcm) of a and b is an element
m ∈ R defined uniquely, up to multiplication by an invertible element, as the generator
of the intersection of the left (resp. right) principal ideals generated by a and by b:
Rm = Ra ∩ Rb (resp. mR = aR ∩ bR).

We say that a and b are right (resp. left) coprime if their right (resp. left) greatest
common divisor is 1 (or invertible), namely if the left (resp. right ) ideal that they generate

http://creativecommons.org/licenses/by/4.0/
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is the whole ringRa +Rb = R (resp. aR+bR = R). In particular there exist u, v ∈ R
such that ua + vb = 1 (resp. au + bv = 1).

An element a ∈ R\{0} is called a right zero divisor if there exists b ∈ R\{0} (called
a left zero divisor) such that ba = 0.

A non-zero element a ∈ R is called regular if it is neither a left nor a right zero divisor.
A set of regular elements R× = {a ∈ R | a is regular} is a multiplicative monoid of R.

A ring R is called a domain, if it does not have zero divisors.
A domain R is called right (left) Euclidean, if there exists a function

Ord : R\{0} �→ Z≥0,

such that

1. Ord (a) ≤ Ord (ab) ≥ Ord (b), ∀a, b ∈ R\{0},
2. for any a, b ∈ R, b 	= 0 there exist unique cr , qr ∈ R (resp. cl , ql ∈ R), such that

a = bcr + qr = clb + ql

and qr = 0 or Ord qr < Ord b (resp. ql = 0 or Ord ql < Ord b).

A principal ideal ring R satisfies the right (and left) Ore property (Theorem 2.2
(c) in [25]). Namely, for any a ∈ R, b ∈ R× there exist c ∈ R×, d ∈ R (resp.
c1 ∈ R×, d1 ∈ R) such that ac = bd (resp. c1a = d1b).

Lemma 5. Let R be a principal ideal ring. Let a and b be two right coprime elements
inR with b regular. Then there exists two left coprime elements c, d ∈ R with c regular
such that ca = db. Moreover,

(i) if cp = dq for some p, q ∈ R then there exists z ∈ R such that p = az and q = bz;
(ii) if pa = qb for some p, q ∈ R then there exists z ∈ R such that p = zc and q = zd.

Proof. It follows from the left Ore property that for a, b ∈ R, b regular, there exist
c, d ∈ R, c regular, such that ca = db. We can assume that c and d are left coprime.
Otherwise, one can simplify on the left by their left greatest common divisor, which is
regular since c is.

(i) Let I = {x ∈ R|∃y ∈ R, dx = cy}. I is a right ideal inR, hence it can be written as
hR for some h ∈ R. Obviously b ∈ I, thus there exists g ∈ R such that b = hg and
both g, h are regular. Element h itself lies in I, therefore there exists f ∈ R such that
dh = c f . Multiplying the latter on the right by g we have c f g = dhg = db = ca,
which implies that f g = a since c is regular. Recall that a and b are right coprime.
Therefore the equalities a = f g and b = hg imply that g is invertible in R.

Now let us assume that cp = dq for some elements p, q ∈ R. By definition of I there
exists w ∈ R such that q = hw. We can rewrite q as q = hgg−1w = bz where
z = g−1w ∈ R. Finally we note that cp = dq = dbz = caz which implies p = az
since c is regular.
Taking the left ideal J = {x ∈ R|∃y ∈ R, xb = ya} we prove part (ii) of the Lemma in
a similar way. �
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Appendix B. Lemmas Used for the Proof of Proposition 13

We denote by π the projection from the space of Laurent difference polynomials A to
the space of difference polynomials K defined by letting π(b) being the nonsingular part
of b for all difference Laurent monomial b ∈ A. For example,

π

(
u +

uu1
u2

)
= u.

If L = ∑
n≤N ln Sn is a Laurent series with coefficients being Laurent difference poly-

nomials, we denote by π(L) the series
∑

n≤N π(ln)Sn .

Lemma 6. Let a, b, c, d ∈ K and n ∈ Z. Then π [(a + bS−1)
−1(c + dS−1)] is a
difference operator.

Proof. We have

(a + bS−1)
−1(c + dS−1) =
∑

n≥1

(ac−2n−1β
n + bd−2n(β

n−1)−1)S
−2n−1

+
∑

n≥0

(ad−2n−1β
n + bc−2n−2(β

n)−1)S
−2n−2

+ ac−1β
0S−1.

(64)

It is clear that for n large enoughπ(ac−2n−1β
n) = 0 and similarlyπ(bd−2n(β

n−1)−1) =
0.

π
(
ac−2n−1β

n + bd−2n(β
n−1)−1

)
= 0 for n � 0.

Similarly,
π

(
ad−2n−1β

n + bc−2n−2(β
n)−1

) = 0 for n � 0.

�
Lemma 7. Let a, b, c, d,∈ K and e ∈ A. Then π [(a + bS−1)
−1eS−1
−1(c + dS−1)]
is a difference operator.

Proof. Let us expand L = (a + bS−1)
−1eS−1
−1(c + dS−1) as a Laurent series in
S−1:

L =
(
a + bS−1

)
⎛

⎝
∑

n≥0

βne−2n−1S
−2n−1

⎞

⎠

⎛

⎝
∑

k≥0

(
βk

)

−1
S−2k−1

⎞

⎠
(
c−1S

−1+d−1S
−2

)

=
(
a + bS−1

)
⎛

⎝
∑

m≥0

βm+1

(
m∑

n=0

( e

u

)

−2n−1

)
S−2m−2

⎞

⎠
(
c−1S

−1 + d−1S
−2

)

=
∑

m≥0

ac−2m−3β
m+1

(
m∑

n=0

( e

u

)

−2n−1

)
S−2m−3

+
∑

m≥0

bd−2m−4

(
βm+1

)

−1

(
m∑

n=0

( e

u

)

−2n−2

)
S−2m−5
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+
∑

m≥0

bc−2m−4

(
βm+1

)

−1

(
m∑

n=0

( e

u

)

−2n−2

)
S−2m−4

+
∑

m≥0

ad−2m−3β
m+1

(
m∑

n=0

( e

u

)

−2n−1

)
S−2m−4. (65)

After applying π to the coefficients of this Laurent series expansion of L , we get a
difference operator. Let us show it for the first summand in the last line of (65), namely
that

∑

m≥0

π

(
ac−2m−3β

m+1

(
m∑

n=0

( e

u

)

−2n−1

))
S−2m−3

is a difference operator (the same argument applies to the remaining three summands).
This follows from the claim that for large enough m, and for all 0 ≤ n ≤ m,

π

(
ac−2m−3β

m+1
( e

u

)

−2n−1

)
= 0. (66)

Indeed, if e can be written as a sum of Laurent monomials for which the degree of the
numerators, as polynomials in the ui ’s are bounded by me, and if ma and mc denote the
degrees of a and c as polynomials in the ui ’s, then (66) holds form > ma +mc +me. �
Lemma 8. Let f be a difference polynomial such that R is recursion for the equation
ut = f . Then there exists a difference polynomial k such that f = u(k2 − k).

Proof. Operator R given by (53) is recursion for ut = f which implies that ln(u) is a
conserved density of f , or in other words that there is a difference polynomial g such
that f = u(g1 − g).

To conclude we need to prove that g1 − g = k2 − k for some difference polynomial
k, which is equivalent to say that g = k1 + k + ρ for some constant ρ. We claim that this
is the same as saying that

∑

n

(−1)n S−n
(

∂g

∂un

)
= 0. (67)

Indeed, it is clear that
∑

n (−1)n S−n ∂
∂un

(S + 1) = 0 by (3) and that any constant satisfies
(67). Conversely, if a difference polynomial g of order (M, N ) satisfies (67), then there
exists a difference polynomial k and a constant ρ such that g = k1 +k +ρ. To check this,
we proceed by induction on the total order of g. If it is zero, meaning that g is a function
of uN for a single N , then g must be a constant. If not, say if g has order (M, N ) with
M < N , then ∂g

∂uN
does not depend on uM . Consequently, we can write g as a sum h + k

where k has order (M ′, N ) with M < M ′ and h has order (M, N ′) with N ′ < N . Since
g and k + k−1 both satisfy (67), it follows that h − k−1 must satisfy (67) as well, i.e. we
reduced the problem to a difference polynomial of lesser total order.

The difference polynomial (67) is the remainder of the division of g∗ by (S + 1) on
the left. Let us call it r :

g∗ = (S + 1)X + r, r =
∑

n

(−1)n S−n
(

∂g

∂un

)
, (68)
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where X is some difference operator. We want to prove that r = 0. It is equivalent to
prove that the remainder r ′ of the division of g∗u(S2 −1) by S +1 on the left is 0. Indeed
r ′ = ur − (ur)−2 and r is a difference polynomial, therefore r = 0 ⇐⇒ r ′ = 0.

We are going to deduce that r ′ = 0 from the fact that R is recursion for f = u(g1−g).
Note that f∗ = u(S − 1)g∗ + g1 − g. Recall Eq. (54) where R was expressed as
(Q
−1C + P)(S2 − 1)−1 1

u . By Definition (36) of a recursion operator we have

(Q∗[ f ] − f∗Q)
−1C − Q
−1
∗[ f ]
−1C

+ Q
−1C∗[ f ] + P(S + 1)−1g∗u(S2 − 1)

− f∗P + P∗[ f ] + Q
−1C(S + 1)−1g∗u(S2 − 1) = 0.

(69)

The idea is to expand (69) as a Laurent series in S−1 and to project the coefficients
in front of S−N for large N on the space of difference polynomials. Let us start by
rearranging (69) using two Euclidean divisions

C = w2 + w−1 + Z(S + 1), g∗u(S2 − 1) = r ′ + (S + 1)Y, (70)

where Y and Z are two difference operators. Combining (69) with (70), we get:

Q
−1(w2 + w−1)S
2(S + 1)−1r ′ + p(S + 1)−1r ′

= Q
−1
∗[ f ]
−1C − (Q∗[ f ] − f∗Q)
−1C

− Q
−1(C∗[ f ] + CY + Zr ′) − Pr ′ + f∗P − P∗[ f ].
(71)

By Lemmas 6 and 7, if M is the RHS of (71), π(M) is a difference operator. Therefore,

π [Q
−1(w2 + w−1)S
2(S + 1)−1r ′ + p(S + 1)−1r ′] (72)

must be a difference operator as well. Let us write Q = a +bS−1 where a = u(uu1 −1)
and b = u(1− uu−1) and let c = w2 +w−1. Looking only at even powers of S−1 in the
Laurent series expansion of (72) we obtain

π [(a(β0c−1 + · · · + βNc−2N−1) − b(β0c−1 + · · ·
+βN−1c−2N+1)−1 − p)r ′−2N ] = 0 for all N � 0, (73)

where the Laurent difference polynomials βn = u−1...u−2n−1
u...u−2n

, n ≥ 1, β0 = 1
u satisfy


−1 =
∑

n≥0

βn S−2n−1. (74)

It is clear that for all k > 1 and for all N ≥ Ord r ′ + 2, we have

π(ac2k−1β
kr ′−2N ) = π(b(c2k−1β

k)−1r
′−2N ) = 0.

In other words, there exists K ≥ 0 such that

π [(a(β0c−1 + · · · + βK c−2K−1) − b(β0c−1 + · · ·
+βK−1c−2K+1)−1 − p)r ′−2N ] = 0 for all N � 0. (75)

If r ′ 	= 0, r ′ is either a constant or the order of r ′−2N must go to (−∞,−∞) as N grows.
In both cases we must have:

π [a(β0c−1 + · · · + βK c−2K−1) − b(β0c−1 + · · · + βK−1c−2K+1)−1 − p] = 0. (76)
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This quantity can be computed directly, and we obtain

p = −2 + u(u2 + 3u1 + 2u + u−1 + u−2) + 2u−1u−3

− u(2u1u−1u−3 + 2u1uu−1 + uu1u2 + u−2u−1u + 2u−4u−2u)
, (77)

which is a contradiction to p given in (57). Thus we have r ′ = 0 and hence g = k1+k+ρ.
By now we have proved the statement. �
Lemma 9. Let g ∈ K be such that R is recursion for f = u(g2 − g). Then

Q
−1
(
C(g)∗u(S2 − 1) − C(g)(S2 − S)

)
+ (Q∗[ f ] − f∗Q − Q(g1 − g2))
−1C

is a difference operator.

Proof. Wehave
−1∗ [ f ] = (g1−g2)
−1+
−1(g1−g2) and f∗ = u(S2−1)g∗+g2−g.
From (69) we deduce that

Q
−1
(
Cg∗u(S2 − 1) − (g2 − g1)C + C∗[ f ]

)
+(Q∗[ f ] − f∗Q − Q(g2 − g1)) 
−1C

(78)
is a difference operator. It remains to rewrite the first nonlocal term. We have modulo
left multiplication by 
 and we have

Cg∗u(S2 − 1) = C(g)∗u(S2 − 1) − (g2(w2)∗ − g1(w−1)∗)u(S2 − 1)

= C(g)∗u(S2 − 1) + u1u3g2(S
5 − S) − uu−2g1(S

2 − S−2)

≡ C(g)∗u(S2 − 1) + (uu−2g−2 − u1u3g2)S − u1u3(g5 − g1)S
2

and
C∗[ f ] = uu−2(g2 − g−2)S − u1u3(g5 − g1)S

2.

Therefore

Cg∗u(S2 − 1) − (g2 − g1)C + C∗[ f ] ≡ C(g)∗u(S2 − 1) − C(g)(S2 − S). (79)

We conclude combining (78) to (79). �
Lemma 10. Let a, b, c, d, e, f, g, h be difference Laurent polynomials such that a, b, g,
h 	= 0 and

(a + bS−1)
−1(c + dS−1) + (e + f S−1)
−1(g + hS−1)

is a difference operator. Then there exists a constant λ ∈ k such that

e + f S−1 = λ(a + bS−1)

c + dS−1 = −λ(g + hS−1).

Proof. Recall the definition of the Laurent monomials βn for n ≥ 0


−1 =
∑

n≥0

βn S−2n−1. (80)
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We have

(a + bS−1)
−1(c + dS−1) =
∑

n≥1

(ac−2n−1β
n + bd−2n(β

n−1)−1)S
−2n−1

+
∑

n≥0

(ad−2n−1β
n + bc−2n−2(β

n)−1)S
−2n−2

+ ac−1β
0S−1.

(81)

Therefore, we must have for large enough n

βn−1(ad−2n+1 + eh−2n+1) + (βn−1)−1(bc−2n + f g−2n) = 0

βn(ac−2n−1 + eg−2n−1) + (βn−1)−1(bd−2n + f h−2n) = 0.

Here βn has poles at u, u−2, . . . , u−2n (βn = u−1...u−2n+1
u...u−2n

) and (βn−1)−1 has poles at
u−1, . . . , u−2n+1. Moreover, the Laurent polynomials inside the parenthesis can only
have a bounded number of poles, independently of n. Combining these two facts we
deduce that for large n the arguments inside the four parenthesis must vanish:

0 = ad−2n+1 + eh−2n+1

0 = bc−2n + f g−2n

0 = ac−2n−1 + eg−2n−1

0 = bd−2n + f h−2n, n � 0.

(82)

Since a, b, g, h 	= 0, either e = f = c = d = 0, in which case we can take λ = 0, or
e, f, c, d, 	= 0. In the latter casewe conclude using the fact that, if twoLaurent difference
polynomials x and y are such that x2n = y for infinitely many n ∈ Z, then x and y are
both equal to the same constant. �
Lemma 11. Let d be a difference polynomial. Then d is in the image of 
 if and only if

d∗u(1 + S−1) − d = 
P, (83)

where P is a difference operator. In this case, we have

d = 


(
−S

(
∑

n

α2n

u

(
∂d

∂u2n

)

−2n

))
. (84)

Here for all n ∈ Z, α2n (resp. α2n+1) is the unique difference Laurent polynomial such
that S2nu − α2n (resp. S2n+1u − α2n+1S−1) is divisible on the left by 
. Moreover,

∑

n

α2n

u

(
∂d

∂u2n

)

−2n

is a difference polynomial.

Proof. Suppose that d = u1d ′
1 − ud ′−1 for a difference Laurent polynomial d ′. Then the

Fréchet derivative of d expands as:

d∗ = 
d′∗ + d ′
1S − d ′−1.
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Hence (we use to ≡ to denote modulo left multiplication by 
) we get

d∗u(1 + S−1) ≡ (Sd ′ − d ′−1)u(1 + S−1) ≡ u1d
′
1 − ud ′−1 ≡ d.

Conversely assume that

d∗u(1 + S−1) ≡ d. (85)

Recall that the αn’s are defined so that S2nu ≡ α2n and S2n+1u ≡ α2n+1S−1 for all
n ∈ Z. The following identity can be easily checked by induction

α2n+2 = u

u−1
α2n+1 = u2

u−1u−2
(α2n)−2, ∀n ∈ Z. (86)

Let us rewrite the LHS of (85):

∑

n

Sn
(

∂d

∂un

)

−n
u(1 + S−1)

=
∑

n

Snu

((
∂d

∂un

)

−n
+
u1
u

(
∂d

∂un+1

)

−n

)

≡
∑

n

α2n

((
∂d

∂u2n

)

−2n
+
u1
u

(
∂d

∂u2n+1

)

−2n

)

+
∑

n

α2n+1S
−1

((
∂d

∂u2n+1

)

−2n−1
+
u1
u

(
∂d

∂u2n+2

)

−2n−1

)
.

(87)

Combining (85), (86) and (87) we obtain

d =
∑

n

α2n

(
∂d

∂u2n

)

−2n
+
u1
u

∑

n

α2n

(
∂d

∂u2n+1

)

−2n
,

0 =
∑

n

u

u−2
(α2n)−2

(
∂d

∂u2n+1

)

−2n−2
+

∑

n

α2n+2

(
∂d

∂u2n+2

)

−2n−2

(88)

from which it follows that

d = 


(
−

∑

n

(α2n)−1

u−1

(
∂d

∂u2n+1

)

−2n−1

)

= 


(
−S

(
∑

n

α2n

u

(
∂d

∂u2n

)

−2n

))
.

We proved that there exists a Laurent difference polynomial d ′ such that d = u1d ′
1 −

ud ′−1. It implies that d ′ cannot have poles (since its highest pole should be lesser or
equal than 0 and its lowest pole should be greater than 0), therefore that it is a difference
polynomial. �
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