Wang, Jingyu (2012) Optical coherence tomography methods using 2-D detector arrays. Doctor of Philosophy (PhD) thesis, University of Kent. (doi:10.22024/UniKent/01.02.94718) (KAR id:94718)
PDF (Optical Character Recognition (OCR) of this thesis enables read aloud functionality of the text.)
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
|
|
Download this file (PDF/78MB) |
Preview |
Official URL: https://doi.org/10.22024/UniKent/01.02.94718 |
Abstract
Optical coherence tomography (OCT) is a non-invasive, non-contact optical technique that allows cross-section imaging of biological tissues with high spatial resolution, high sensitivity and high dynamic range. Standard OCT uses a focused beam to illuminate a point on the target and detects the signal using a single photodetector. To acquire transverse information, transversal scanning of the illumination point is required. Alternatively, multiple OCT channels can be operated in parallel simultaneously; parallel OCT signals are recorded by a two-dimensional (2D) detector array. This approach is known as Parallel-detection OCT. In this thesis, methods, experiments and results using three parallel OCT techniques, including full -field (time-domain) OCT (FF-OCT), full-field swept-source OCT (FF-SS-OCT) and line-field Fourier-domain OCT (LF-FD-OCT), are presented. Several 2D digital cameras of different formats have been used and evaluated in the experiments of different methods. With the LF-FD-OCT method, photography equipment, such as flashtubes and commercial DSLR cameras have been equipped and tested for OCT imaging. The techniques used in FF-OCT and FF-SS-OCT are employed in a novel wavefront sensing technique, which combines OCT methods with a Shack-Hartmann wavefront sensor (SH-WFS). This combination technique is demonstrated capable of measuring depth-resolved wavefront aberrations, which has the potential to extend the applications of SH-WFS in wavefront-guided biomedical imaging techniques.
Item Type: | Thesis (Doctor of Philosophy (PhD)) |
---|---|
Thesis advisor: | Podoleanu, Adrian G.H. |
DOI/Identification number: | 10.22024/UniKent/01.02.94718 |
Additional information: | This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you feel that your rights are compromised by open access to this thesis, or if you would like more information about its availability, please contact us at ResearchSupport@kent.ac.uk and we will seriously consider your claim under the terms of our Take-Down Policy (https://www.kent.ac.uk/is/regulations/library/kar-take-down-policy.html). |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
SWORD Depositor: | SWORD Copy |
Depositing User: | SWORD Copy |
Date Deposited: | 27 Sep 2022 14:54 UTC |
Last Modified: | 27 Sep 2022 14:54 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/94718 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):