Adedipe, Tosin, Shafiee, Mahmood, Zio, Enrico (2020) Bayesian Network Modelling for the Wind Energy Industry: An Overview. Reliability Engineering and System Safety, 202 . ISSN 0951-8320. (doi:10.1016/j.ress.2020.107053) (KAR id:81891)
PDF
Author's Accepted Manuscript
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
|
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://dx.doi.org/10.1016/j.ress.2020.107053 |
Abstract
Wind energy farms are moving into deeper and more remote waters to benefit from availability of more space for the installation of wind turbines as well as higher wind speed for the production of electricity. Wind farm asset managers must ensure availability of adequate power supply as well as reliability of wind turbines throughout their lifetime. The environmental conditions in deep waters often change very rapidly, and therefore the performance metrics used in different life cycle phases of a wind energy project will need to be updated on a frequent basis so as to ensure that the wind energy systems operate at the highest reliability. For this reason, there is a crucial need for the wind energy industry to adopt advanced computational tools/techniques that are capable of modelling the risk scenarios in near real-time as well as providing a prompt response to any emergency situation. Bayesian network (BN) is a popular probabilistic method that can be used for system reliability modelling and decision-making under uncertainty. This paper provides a systematic review and evaluation of existing research on the use of BN models in the wind energy sector. To conduct this literature review, all relevant databases from inception to date were searched, and a total of 70 sources (including journal publications, conference proceedings, PhD dissertations, industry reports, best practice documents and software user guides) which met the inclusion criteria were identified. Our review findings reveal that the applications of BNs in the wind energy industry are quite diverse, ranging from wind power and weather forecasting to risk management, fault diagnosis and prognosis, structural analysis, reliability assessment, and maintenance planning and updating. Furthermore, a number of case studies are presented to illustrate the applicability of BNs in practice. Although the paper details information applicable to the wind energy industry, the knowledge gained can be transferred to many other sectors.
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):