Shafiee, M, Alghamdi, A, Sansom, C, Hart, P, Encinas-Oropesa, A (2020) A Through-Life Cost Analysis Model to Support Investment Decision-Making in Concentrated Solar Power Projects. Energies, 13 (7). pp. 1-20. ISSN 1996-1073. (doi:10.3390/en13071553) (KAR id:80627)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/906kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.3390/en13071553 |
Abstract
This research paper aims to propose a through-life cost analysis model for estimating the profitability of renewable concentrated solar power (CSP) technologies. The financial outputs of the model include net present value (NPV) and benefit-cost ratio (BCR) of the project, internal rate of return (IRR) and discounted payback period (DPBP) of the investment, and levelized cost of energy (LCoE) from the CSP technology. The meteorological data for a specific location in the city of Tucson in Arizona is collected from a network of automated weather stations, and the NREL System Advisor Model (SAM) is applied to simulate hourly energy output of the CSP plant. An Excel spreadsheet tool is designed to calculate, in a bottom-up approach, the financial metrics required for approval of CSP projects. The model is tested on a 50MW parabolic trough CSP plant and the results show an annual energy production of 456,351,232 kWh, NPV of over $64 million and LCoE of 0.16 $/kWh. Finally, a sensitivity analysis is performed to identify the factors which have the most significant effect on the economic performance of CSP technologies. The proposed model can provide valuable guidance to support the strategic planning and investment decision-making in CSP projects.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.3390/en13071553 |
Uncontrolled keywords: | concentrated solar power (CSP); through-life cost analysis; system advisor model (SAM); net present value (NPV); benefit-cost ratio (BCR); internal rate of return (IRR); discounted payback period (DPBP); levelized cost of energy (LCoE) |
Subjects: |
T Technology > TA Engineering (General). Civil engineering (General) > TA165 Engineering instruments, meters etc. Industrial instrumentation T Technology > TA Engineering (General). Civil engineering (General) > TA168 Systems engineering T Technology > TA Engineering (General). Civil engineering (General) > TA401 Materials engineering and construction T Technology > TJ Mechanical engineering and machinery |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Mahmood Shafiee |
Date Deposited: | 27 Mar 2020 08:23 UTC |
Last Modified: | 05 Nov 2024 12:46 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/80627 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):