Akbari, Saeed, Sakhaei, Amir Hosein, Kowsari, Kavin, Yang, Bill, Serjouei, Ahmad, Yuanfang, Zhang, Ge, Qi (2018) Enhanced multimaterial 4D printing with active hinges. Smart Materials and Structures, 27 (6). Article Number 65027. ISSN 0964-1726. (doi:10.1088/1361-665X/aabe63) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:78412)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. (Contact us about this Publication) | |
Official URL: https://dx.doi.org/10.1088/1361-665X%2Faabe63 |
Abstract
Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1088/1361-665X/aabe63 |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA401 Materials engineering and construction |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Amirhosein Sakhaei |
Date Deposited: | 08 Nov 2019 13:20 UTC |
Last Modified: | 05 Nov 2024 12:43 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/78412 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):