Alves, Roberto T. and Delgado, Myriam and Lopes, Heitor S. and Freitas, Alex A. (2004) An artificial immune system for fuzzy-rule induction in data mining. In: Yao, Xin, ed. Parallel Problem Solving from Nature - PPSN VIII 8th International Conference. Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 1011-1020. ISBN 978-3-540-23092-2. E-ISBN 978-3-540-30217-9. (doi:10.1007/978-3-540-30217-9_102) (KAR id:14094)
PDF
Language: English |
|
Download this file (PDF/343kB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1007/978-3-540-30217-9_102 |
Abstract
This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the entire training set, but also the affinity between the rule and the new example. This affinity must be greater than a threshold in order for the fuzzy rule to be activated, and it is proposed an adaptive procedure for computing this threshold for each rule. This paper reports results for the proposed algorithm in several data sets. Results are analyzed with respect to both predictive accuracy and rule set simplicity, and are compared with C4.5rules, a very popular data mining algorithm.
Item Type: | Book section |
---|---|
DOI/Identification number: | 10.1007/978-3-540-30217-9_102 |
Uncontrolled keywords: | artificial immune systems, data mining, classification |
Subjects: | Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming, |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Mark Wheadon |
Date Deposited: | 24 Nov 2008 18:01 UTC |
Last Modified: | 05 Nov 2024 09:48 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/14094 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):