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Abstract. This work proposes a classification-rule discovery algorithm 

integrating artificial immune systems and fuzzy systems. The algorithm consists 

of two parts: a sequential covering procedure and a rule evolution procedure. 

Each antibody (candidate solution) corresponds to a classification rule. The 

classification of new examples (antigens) considers not only the fitness of a 

fuzzy rule based on the entire training set, but also the affinity between the rule 

and the new example. This affinity must be greater than a threshold in order for 

the fuzzy rule to be activated, and it is proposed an adaptive procedure for 

computing this threshold for each rule. This paper reports results for the 

proposed algorithm in several data sets. Results are analyzed with respect to 

both predictive accuracy and rule set simplicity, and are compared with 

C4.5rules, a very popular data mining algorithm. 

1   Introduction 

Data mining consists of extracting knowledge from real-world data sets. We stress 

that the goal of data mining is to discover knowledge that is not only accurate, but 

also comprehensible [1],[2], i.e. knowledge that can be easily interpreted by the user. 

Hence, the user can validate discovered knowledge and combine it with her/his back-

ground knowledge in order to make an intelligent decision, rather than blindly trusting 

the results of a �black box�. 

This work focuses on the classification task of data mining, where the goal is to 

discover a classification model (a rule set, in this work) that predicts the class of an 

example (a record) based on the values of predictor attributes for that example.  

More precisely, this work proposes a new algorithm for inducing a set of fuzzy 

classification rules based on an artificial immune system (AIS), a relatively new com-

putational intelligence paradigm [3]. The proposed algorithm discovers a set of rules 

of the form �IF (fuzzy conditions) THEN (class)�, whose interpretation is: if an ex-

ample�s attribute values satisfy the fuzzy conditions then the example belongs to the 

class predicted by the rule. The fuzzy representation of the rule conditions not only 

gives the system more flexibility to cope with uncertainties typically found in real-

world applications, but also improves the comprehensibility of the rules [4],[5]. 

The remainder of this paper is organized as follows. Section 2 presents a brief 

overview of AIS, fuzzy systems, and related work. Section 3 describes in detail the 
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proposed algorithm. Section 4 reports computational results. Finally, section 5 pre-

sents the conclusions and future research directions. 

2  Artificial Immune Systems, Fuzzy Systems and Related Work 

AIS consist of methods that are inspired by the biological immune system and de-

signed to solve real-world problems [6]. This work focuses on one kind of AIS in-

spired by the clonal selection principle of the biological immune system. In essence, 

when an immune system detector (a lymphocyte) has a high affinity (a high degree of 

matching) with an antigen (invader microorganism), this recognition stimulates the 

proliferation and differentiation of cells that produce antibodies. This process, called 

clonal expansion (because new cells are produced by cloning and mutating existing 

cells), produces a large population of antibodies targeted for that antigen. This clonal 

expansion leads to the destruction or neutralization of the antigen and to the retention 

of some cells in the immunological �memory�, so that the immune system can act 

more quickly the next time the same antigen is found in the body. 

This process is a form of natural selection. The better a clone recognizes an anti-

gen, the more it tends to proliferate. This process is also adaptive, because the clones 

undergo mutation. Since the reproduction rate is very high, the frequency of mutation 

is also very high. This mechanism is called somatic mutation or hypermutation. 

Jointly with the selective process, somatic mutation improves the clones� ability in 

recognizing the antigen (since the best mutations lead to a higher proliferation of the 

corresponding clones), producing clones with greater affinity for that particular anti-

gen. 

Fuzzy systems use symbols � called linguistic terms � that have a well-defined se-

mantics and are represented by membership functions of fuzzy sets. This allows the 

numerical processing of those symbols or concepts. Fuzzy systems are very effective 

in expressing the natural ambiguity and subjectivity of human reasoning [4],[5]. 

Membership functions determine to which degree a given object belongs to a fuzzy 

set. In a fuzzy system this degree of membership varies from 0 to 1. Membership 

functions can take different forms, varying from the simplest ones (triangular func-

tions) to more complex functions (parameterized by the user). 

According to [7], in a classification problem with n attributes, fuzzy rules can be 

written as: , where 

 is an n-dimensional pattern vector, (i=1,�,n) is the i-th attribute�s 

linguistic value (e.g. small or large), C is the class predicted by the rule, and N is the 

number of fuzzy if-then rules. Hence, the antecedent (�IF part�) of each fuzzy rule is 

specified by a combination of linguistic values.  
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We now briefly review related work. Probably the first AIS specifically designed 

for the classification task is AIRS [8]. In addition, it has been suggested that an AIS 

based on the clonal selection principle, called CLONALG, can be used for classifica-

tion in the context of pattern recognition [6], although originally proposed for other 

tasks. However, unlike the AIS algorithm proposed in this paper, neither AIRS nor 

CLONALG discovers comprehensible IF-THEN rules. Hence, neither of those two 

algorithms addresses the data mining goal of discovering comprehensible, interpret-



able knowledge (see Introduction). Also, they do not discover fuzzy knowledge, 

unlike the algorithm proposed in this paper. An AIS for discovering IF-THEN rules is 

proposed in [9]. Unlike the algorithm proposed in this paper, that work is based on ex-

tending the negative selection algorithm with a genetic algorithm. We have avoided 

the use of the negative selection algorithm because this kind of AIS method has some 

conceptual problems in the context of the classification task, as discussed in [10]. 

Also, again that work does not discover fuzzy rules. A fuzzy AIS is proposed in [11]. 

However, that work addresses the task of clustering, which is very different from the 

task of classification addressed in this paper. To the best of our knowledge, the algo-

rithm proposed in this paper is the first AIS for discovering fuzzy classification rules 

based on the clonal selection principle. 

3   Description of the IFRAIS Algorithm 

The proposed algorithm, called IFRAIS (Induction of Fuzzy Rules with an Artificial 

Immune System), discovers fuzzy classification rules.  In essence, IFRAIS evolves a 

population of antibodies, where each antibody represents the antecedent (the �IF 

part�) of a fuzzy classification rule. Each antigen represents an example (record, or 

case). The rule antecedent is formed by a conjunction of conditions (attribute-value 

pairs, e.g. �Salary = low�). Each attribute can be either continuous (real-valued, e.g. 

Salary) or categorical (nominal, e.g. Gender), as usual in data mining. Categorical at-

tributes are inherently crisp, but continuous attributes are fuzzified by using a set of 

three linguistic terms (low, medium, high). In this work these linguistic terms are rep-

resented by triangular membership functions, for the sake of simplicity.  

More precisely, an antibody is encoded by a string with n genes, where n is the 

number of attributes. Each gene i, i=1,�,n, consists of two elements: (a) a value Vi 

specifying the value (or linguistic term) of the i-th attribute in the i-th rule condition; 

and (b) a boolean flag Bi indicating whether or not the i-th condition occurs in the 

classification rule decoded from the antibody. Hence, although all antibodies have the 

same genotype length, different antibodies represent rules with different number of 

conditions in their antecedent � subject to the restriction that each decoded rule has at 

least one condition in its antecedent. This flexibility is essential in data mining, where 

the optimal number of conditions in each rule is unknown a priori.  

The rule consequents (predicted classes) are not evolved by the AIS. Rather, all the 

antibodies of a given AIS run are associated with the same rule consequent, so that 

the algorithm is run multiple times to discover rules predicting different classes � as 

will be explained in more detail in subsection 3.1. 

3.1   Discovering Rules from the Training Set 

The IFRAIS algorithm (version 1.0) is described in the pseudocodes of Figure 1 � the 

Sequential Covering (SC) � and Figure 2 � the Rule Evolution (RE). 

The SC procedure starts by initializing the DiscoveredRuleSet to the empty set, and 

then it performs a loop over the classes to be predicted [2]. For each class, the algo-

rithm initializes the TrainSet with the set of all examples in the training set and itera-

tively calls the RE procedure, passing as parameters the current TrainSet and the class 



c to be predicted by all the candidate rules in the current run of that procedure. The 

RE procedure returns the best evolved rule, which is then stored in the variable Be-

stRule. Next the algorithm adds the BestRule to the DiscoveredRuleSet and it removes 

from the current TrainSet the examples that have been correctly covered by the best-

evolved rule. An example is correctly covered by a rule if and only if the example sat-

isfies the rule antecedent and the example has the same class as predicted by the rule. 

In order to compute whether or not an example satisfies a rule antecedent we compute 

the affinity between the rule and the example, as follows.  

 
  Input: full training set; 

  Output: set of discovered rules; 

  DiscoveredRuleSet = ∅; 
  FOR EACH class c 

     TrainSet = {set of all training examples}; 

     WHILE |TrainSet| > MaxUncovExamp 

         BestRule = RULE-EVOLUTION(TrainSet, class c); 

         DiscoveredRuleSet = DiscoveredRuleSet ∪ BestRule; 

         TrainSet = TrainSet � {set of examples correctly covered by BestRule}; 

     END WHILE; 

  END FOR EACH class; 

  FOR EACH rule in DiscoveredRuleSet 

       Recompute the fitness of the rule (antibody) using the full training set of examples; 

  END FOR; 

 
Fig. 1. Sequential Covering (SC) procedure  

  Input: current TrainSet;  

            the class c predicted by all the rules/antibodies in this run of this procedure;  

  Output: the best evolved rule; 

  Create initial population of antibodies at random;   

  Prune each rule antecedent in a stochastic way; 

  Compute fitness of each antibody; 

  FOR i = 1 to Number of Generations 

       Perform tournament selection T times, getting T winners to be cloned; 

       FOR EACH antibody to be cloned 

          Produce C clones of the antibody, where C is proportional to fitness; 

          FOR EACH just-produced clone 

             Mutate clone with a rate inversely proportional to its fitness; 

             Prune each clone in a stochastic way; 

             Compute fitness of the clone; 

          END FOR EACH clone; 

       END FOR EACH antibody; 

       Replace the T worst-fitness antibodies in the population by the T best-fitness clones;  

  END FOR i; 

  Return the rule whose antecedent consists of the antibody with the best fitness among all  

  antibodies produced in all generations, and whose consequent consists of class c; 

Fig. 2. Rule Evolution (RE) procedure  

First, for each condition in the rule decoded from an antibody, the algorithm com-

putes the degree to which the original continuous value of the corresponding attribute 



(in the database) belongs to the fuzzy set associated with the rule condition. These de-

grees of membership are denoted by µA1(x1),�,µAn(xn) where n is the number of con-

ditions in the rule. The next step is to compute the degree to which the example satis-

fies the rule antecedent as a whole. This is computed by applying the standard 

aggregation operator min to the µA1(x1),�,µAn(xn) values. More precisely, the affinity 

between an antibody j and an antigen k is given by Equation (1): 
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An example satisfies a rule (i.e., a rule is activated for that example) if the degree 

of affinity between the rule and the example is greater than an activation threshold, 

i.e., if Afin(k,j) >Lj, where Lj denotes the activation threshold for the j-th rule.  

This work proposes an adaptive procedure to automatically choose the best value 

of affinity threshold Lj for each rule j, out of a reasonably large range of values. More 

precisely, the algorithm considers m uniformly distributed values of Lj within the 

range [0.5, 0.7]. In this work m = 20, so that the algorithm considers all values of Lj in 

{0.50, 0.51, 0.52, �,0.69, 0.70}. For each of these values, the algorithm computes the 

fitness of the rule in the training set (as will be explained later) and chooses the Lj 

value that maximizes the fitness of the rule. It should be noted that this mechanism 

does not require recomputing the degree of matching between each example and the 

rule, which is the most computationally expensive part of fitness computation. It just 

requires recomputing the number of examples satisfying and not satisfying each rule, 

so that its processing time is not too long. In the above range, the lower bound 0.5 is a 

natural value, since a degree of affinity smaller than 0.5 would mean that the example 

does not satisfy the rule to a degree greater than the degree to which it satisfies the 

rule. Intuitively the rule should not be activated in this case. The upper bound of 0.7 

and the value of m = 20 were empirically determined, and seem to cover a reasonably 

wide range of useful values for Lj.  

The WHILE loop is iteratively performed until the number of uncovered examples 

is smaller than a user-defined threshold MaxUncovExamp, so that this procedure dis-

covers as many rules as necessary to cover the vast majority of the training examples. 

Finally, in the last step of the SC procedure we recompute the fitness of each rule in 

the DiscoveredRuleSet, by using the full training set. 

The RE procedure starts by randomly creating an initial population of antibodies, 

where each antibody represents the antecedent of a fuzzy classification rule. For each 

rule, the system prunes the rule and computes the fitness of the antibody. Rule prun-

ing has a twofold motivation: reducing the overfitting of rules to the data and improv-

ing the simplicity (comprehensibility) of the rules. The basic idea of this rule pruning 

procedure is that, the lower the predictive power of a condition, the more likely the 

condition will be removed from the rule. The predictive power of a condition is esti-

mated by computing its information gain, a very popular heuristic measure of predic-

tive power in data mining [2]. This rule pruning procedure was chosen because it has 

been shown to be both effective and very computationally efficient in [12]. After rule 

pruning, the algorithm computes the fitness of each antibody, and then it performs the 

outer FOR loop over a fixed number of generations. 

This outer FOR loop starts by performing T tournament selection (with tournament 

size of 10) procedures, in order to select T winner antibodies that will be cloned in the 

next step. Tournament selection is well-known and often used in evolutionary algo-



rithms [13]. Once T antibodies have been selected, the algorithm performs its core 

step, which is inspired by the clonal selection principle (discussed in Section 2). This 

step consists of several sub-steps, as follows. First, for each of the T antibodies to be 

cloned the algorithm produces C clones. The value of C is proportional to the fitness 

of the antibody. The function used to implement this procedure is shown in Equation 

(2), where fit(Ab) denotes the fitness of a given antibody Ab and MaxNumCl denotes 

the maximum number of clones for an antibody. As indicated in the last part of the 

equation (the �otherwise� condition), the number of clones increases linearly with the 

antibody fitness when 0 < Fit(Ab) < 0.5, and any antibody with a fitness greater than 

or equal to 0.5 will have MaxNumCl clones. We set MaxNumCl to just 10 to prevent 

the clone population from being very large, which would not only be inefficient but 

also possibly lead to overfitting of the rules to the data. 
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Next, each of the just-produced clones undergoes a process of hypermutation. This 

process follows [6], where the mutation rate is inversely proportional to the clone�s 

fitness (i.e., the fitness of its �parent� antibody). In words, the lower the fitness (the 

worse a clone is), the higher its mutation rate. More precisely, the mutation rate for a 

given clone cl, denoted mut_rate(cl), is given by Equation (3): 

)))(1()(()( clfitclmute_rate −×−+= αβα  (3) 

where α and β are the smallest and greatest possible mutation rates, respectively, and 

fit(cl) is the fitness of clone cl. The fitness of a clone is a number normalized between 

0 and 1, as will be explained later, so that the above equation collapses to α when the 

clone has the maximum fitness of 1, and it collapses to β when the clone has the 

minimum fitness of 0. In our experiments we have set α and β to 20% and 50%, re-

spectively � empirically-determined values. These numbers represent the probability 

that each gene (rule condition) will undergo mutation. Once a clone has undergone 

hypermutation, its corresponding rule antecedent is pruned by using the previously-

explained rule pruning procedure. Finally, the fitness of the clone is recomputed, us-

ing the current TrainSet. 

The next step consists of population updating. More precisely, the T-worst fitness 

antibodies in the current population (not including the clones created by the clonal se-

lection procedure) are replaced by the T best-fitness clones out of all clones produced 

by the clonal selection procedure. This keeps the population size constant at the end 

of each generation. The parameter T was set to 10 in our experiments. The population 

size was set to 50 and the number of generations was set to 50. These values were 

empirically determined. 

Finally, the RE procedure returns, to the caller SC procedure, the best evolved rule, 

which will then be added to the set of discovered rules by the caller procedure. The 

best evolved rule consists of the rule antecedent (�IF part� of the rule) represented by 

the antibody with the best fitness, across all antibodies produced in all generations, 



and of the rule consequent (�THEN part� of the rule) containing the class c, which 

was the class associated with all the antibodies created by the RE procedure. 

 We now turn to the fitness function used by the RE procedure. The fitness of an 

antibody Ab, denoted by fit(Ab), is given by Equation (4): 
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Where the variables TP, FN, TN and FP have the following meaning: 

• TP = number of true positives, i.e. number of examples satisfying the rule 

and having the same class as predicted by the rule;  

• FN = number of false negatives, i.e. number of examples that do not satisfy 

the rule but have the class predicted by the rule; 

• TN = number of true negatives, i.e. number of examples that do not satisfy 

the rule and do not have the class predicted by the rule; 

• FP = number of false positives, i.e. number of examples that satisfy the rule 

but do not have the class predicted by the rule. 

This fitness function was proposed by [14] and has also been used by other evolu-

tionary algorithms for discovering classification rules. However, in most projects us-

ing this function the discovered rules are crisp, whereas in our project the rules are 

fuzzy. Hence, in this project the computation of the TP, FN, TN and FP involves, for 

each example, measuring the degree of affinity (fuzzy matching) between the exam-

ple and the rule. Note that the same affinity function (Equation (1)) and the same pro-

cedure for determining whether or not an example satisfies a rule are used in both the 

SC and the RE procedures. 

3.2  Using the Discovered Rules to Classify Examples in the Test Set 

The rules discovered from the training set are used to classify new examples in the 

test set (unseen during training) as follows. For each test example, the system identi-

fies the rule(s) activated for that example. Recall that a rule j is activated for example 

k if the affinity between j and k is greater than the affinity threshold for rule j.  

When classifying a test example, there are three possible cases. First, if all the rules 

activated for that example predict the same class, then the example is simply assigned 

to that class. Second, if there are two or more rules predicting different classes acti-

vated for that example, the system uses a conflict resolution strategy consisting of se-

lecting the rule with the greatest value of the product of the affinity between the rule 

and the example (Equation (1)) by the fitness of the rule (Equation (4)), i.e., it chooses 

the class C given by Equation (5): 

( ))(),(max jfitjkAfinCC
j
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Third, if there is no rule activated for the example, the example is classified by the 

�default rule�, which simply predicts the most frequent class in the training set [2]. 



4. Computational Results 

The proposed algorithm was evaluated in six public domain data sets: BUPA, CRX, 

Wisconsin Cancer, Votes, Hepatities, Ljubljana Cancer. These data sets are available 

from the UCI repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). The 

experiments used a well-known method for estimating predictive accuracy, namely 5-

fold cross-validation [2].  

Table 1 shows the number of continuous and categorical attributes for each data set 

(recall that only continuous attributes are fuzzified), as well as the average accuracy 

rate on the test set computed by the cross-validation procedure. The numbers after the 

�±� symbol are the standard deviations. Note that the Votes data set does not have any 

continuous attribute to be fuzzified. This data set was included in the experiments to 

evaluate IFRAIS� performance in the �degenerated� case of discovering crisp rules 

only. The other data sets have 6 or 9 continuous attributes that are fuzzified by 

IFRAIS. The accuracy rate is shown for IFRAIS and for C4.5Rules, a very popular 

data mining algorithm for discovering (crisp) classification rules [15]. For each data 

set, the highest accuracy rate between the two algorithms is shown in bold. 

Table 1. Characteristics of data sets and accuracy rate on the test set 

Number of Attributes Data Sets 

Continous Categorical

IFRAIS C4.5Rules 

Crx 6 9 86.29 ± 0.91 90.22 ± 1.59 

Bupa 6 0 56.22 ± 2.44 67.40 ± 1.60 

Hepatitis 6 13 78.66 ± 1.70 76.32 ± 2.79 

Votes 0 16 95.61 ± 0.86 94.82 ± 0.82 

Wisconsin 9 0 95.75 ± 0.96 95.32 ± 1.09 

Ljubljana 9 0 70.18 ±  3.97 68.80 ± 4.45 

 

In Table 1, IFRAIS obtained higher accuracy than C4.5Rules in four out of the six 

data sets, but the differences in accuracy rate are not significant � since the accuracy 

rate intervals (based on the standard deviations) overlap. C4.5Rules obtained a higher 

accuracy than IFRAIS in only two data sets (Crx and Bupa), and the difference was 

significant in both cases � since the accuracy rate intervals do not overlap. The reason 

for this seems to be that the rule sets discovered by IFRAIS in these two data sets 

were too simple, and so were underfitted to the data. 

Table 2. Simplicity of the discovered rule set 

# Rules # Conditions Data Sets 

IFRAIS C4.5 Rules IFRAIS C4.5 Rules 

Crx 7.2  0.20 ± 15.6 ±  1.12 19,4 ±  0,24 63.0  4.03 ±
Bupa 7.2  0.37 ± 11.2 ±  1.65 13.0 ±  1.30 36.6  6.16 ±
Hepatitis 4.8  0.20 ± 5.0  ±  0.44 10.0 ±  0.70 10.4  1.53 ±
Votes 3.4  0.24 ± 5.6  ±  0.67 4.0  ±  0.63 14.4  2.82 ±
Wisconsin 6.4  0.40 ± 6.6  ±  0.50 10.2 ±  1.01 14.4  1.28 ±
Ljubljana 6.2  3.37 ± 5.0  ±  0.54 11.2 ±  1.06 15.2  3.08 ±



Table 2 shows the results of both IFRAIS and C4.5Rules with respect to the sim-

plicity of the discovered rule set, measured by the average number of discovered rules 

and the average total number of conditions in all discovered rules. (Recall that the av-

erages were computed over the five iterations of the cross-validation procedure.) With 

respect to this rule quality criterion, the results obtained by IFRAIS were much better 

than the results obtained by C4.5Rules in all data sets. (In the Ljubljana cancer data 

set, although C4.5Rules discovered a slight smaller number of rules, IFRAIS still dis-

covered a significantly simpler data set, as shown by the total number of conditions.) 

5  Conclusions and Future Research 

This work proposed a new AIS, called IFRAIS, for discovering fuzzy classification 

rules. IFRAIS uses a sequential covering procedure that has two important differences 

with respect to the standard procedure used by conventional rule induction algorithms 

[2]. First, it stops the covering process when the number of uncovered examples has 

been reduced to a very low number (smaller than the MaxUncovExamp threshold), 

rather than stopping only when the number of uncovered examples has reached zero, 

as usual. The motivation for this modification was to avoid overfitting of a rule to just 

a very small number of examples, where there are not enough examples for a reliable 

induction of a new rule. In addition, this modification helped to produce simpler rule 

sets (as shown in Table 2), more easily interpreted by a human user, since it avoids 

the generation of one or more very specific rules covering very few examples. This 

modification led to improved results in our preliminary experiments and it was also 

successfully used in [16].  

The second difference was the use of an affinity function and an affinity threshold 

to decide whether or not an example satisfies a rule. Of course, this modification is 

not necessary in conventional (crisp) rule induction algorithms, where the matching 

between an example and a rule is always binary. However, this is fundamental in our 

case, where the rules have fuzzy antecedents, producing degrees of matching between 

0 and 1. We recognize that the value of the affinity threshold can potentially have a 

significant impact in the performance of the algorithm, and that it is difficult to de-

termine the �optimal� value of this parameter without many experiments. Actually, 

there is no strong reason to believe that the �optimal� value of this parameter should 

be the same for all rules. Hence, we developed an adaptive mechanism for choosing 

the best affinity threshold for each rule � i.e., choosing the affinity threshold that 

maximizes the fitness of the rule, out of a wide range of possible affinity thresholds. 

This adaptive mechanism increases the autonomy of the system and relieves the user 

from the difficult task of adjusting this threshold, whose value has a significant im-

pact in the predictive accuracy of the system. 

IFRAIS was compared with C4.5Rules in 6 real-world data sets. IFRAIS obtained 

classification accuracies slightly better than C4.5Rules in 4 data sets, but classifica-

tion accuracies significantly worse than C4.5Rules in 2 data sets. However, IFRAIS 

discovered rule sets were much simpler than the rule sets discovered by C4.5Rules in 

virtually all the 6 data sets. This is particularly important in the context of data min-

ing, where knowledge comprehensibility is very important [1][2] � since discovered 

knowledge is supposed to be interpreted by the user, as discussed in the Introduction. 



In addition, it should be recalled that C4.5Rules is the result of decades of research in 

decision tree and rule induction algorithms, whereas IFRAIS is still in its first version 

� and the whole area of AIS is still relatively new.  

Some directions for future research, which might improve the predictive accuracy 

of IFRAIS, are as follows. First, the system could automatically determine the number 

of linguistic terms for each continuous attribute, rather than just using a fixed number 

as in the current version. Second, when there are two or more rules predicting differ-

ent classes activated for a test example, the system could use all the activated rules to 

compute a predicted class, rather than just choosing the best rule as in the current ver-

sion. Third, one could develop variations of the rule evolution procedure, which is 

based on the clonal selection principle, in order to investigate different trade-offs be-

tween exploration and exploitation in the search for rules. 
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