Zhou, Lingling, Liu, Yang, Wang, Zhaojia, Liu, Daiqi, Xie, Bingxin, Zhang, Yue, Yuan, Meng, Tse, Gary, Li, Guangping, Xu, Gang, and others. (2021) Activation of NADPH oxidase mediates mitochondrial oxidative stress and atrial remodeling in diabetic rabbits. Life Sciences, 272 . Article Number 119240. ISSN 0024-3205. (doi:10.1016/j.lfs.2021.119240) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:98748)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. (Contact us about this Publication) | |
Official URL: https://doi.org/10.1016/j.lfs.2021.119240 |
Abstract
Aims: The mechanisms of atrial fibrillation (AF) in diabetes mellitus (DM) involve a complex interplay between increased oxidative stress, mitochondrial dysfunction and atrial remodeling. In this study, we examined the effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation on mitochondrial oxidative stress and atrial remodeling in a rabbit model of diabetes mellitus (DM).
Main methods: Healthy rabbits were selected and randomly divided into control, diabetic and apocynin administration group. Parameters of echocardiography, atrial electrophysiology, oxidative stress and mitochondrial function were compared between the different groups.
Key findings: Compared to the control group, the DM group showed higher activity of NADPH oxidase, increased oxidative stress, larger left atrial diameter, a reduction in atrial mean conduction velocity. These findings were associated with increased interstitial fibrosis of the atria and higher atrial fibrillation (AF) inducibility. Moreover, atrial ultrastructure and mitochondrial function such as the mitochondrial respiratory control rate (RCR) were impaired. NADPH oxidase inhibition using the pharmacological agent apocynin improved these changes.
Significance: NADPH oxidase activity plays an important role in mitochondrial oxidative stress, which is associated with AF inducibility by promoting adverse atrial remodeling. The NADPH oxidase inhibitor apocynin can prevent these pathological changes and may be a potential drug for AF treatment.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1016/j.lfs.2021.119240 |
Uncontrolled keywords: | NADPH oxidase, Diabetes mellitus, Apocynin, Atrial remodeling, Mitochondrial oxidative stress |
Subjects: | R Medicine |
Divisions: | Divisions > Division of Natural Sciences > Kent and Medway Medical School |
Depositing User: | Manfred Gschwandtner |
Date Deposited: | 06 Dec 2022 10:21 UTC |
Last Modified: | 05 Nov 2024 13:04 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/98748 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):