Skip to main content
Kent Academic Repository

A vector of point processes for modeling interactions between and within species using capture-recapture data

Diana, Alex, Matechou, Eleni, Griffin, Jim E., Jhala, Yadvendradev, Qureshi, Qamar (2022) A vector of point processes for modeling interactions between and within species using capture-recapture data. Environmetrics, 33 (8). Article Number e2781. ISSN 1180-4009. (doi:10.1002/env.2781) (KAR id:98124)

PDF Publisher pdf
Language: English


Download this file
(PDF/2MB)
[thumbnail of Environmetrics - 2022 - Diana - A vector of point processes for modeling interactions between and within species using.pdf]
Preview
Request a format suitable for use with assistive technology e.g. a screenreader
PDF Author's Accepted Manuscript
Language: English

Restricted to Repository staff only

Contact us about this Publication
[thumbnail of A_vector_of_point_processes_for_modelling_interactions_between_and_within_species_using_capture_recapture_data_ (1).pdf]
Official URL:
https://doi.org/10.1002/env.2781

Abstract

Capture-recapture (CR) data and corresponding models have been used extensively to estimate the size of wildlife populations when detection probability is less than 1. When the locations of traps or cameras used to capture or detect individuals are known, spatially-explicit CR models are used to infer the spatial pattern of the individual locations and population density. Individual locations, referred to as activity centers (ACs), are defined as the locations around which the individuals move. These ACs are typically assumed to be independent, and their spatial pattern is modeled using homogeneous Poisson processes. However, this assumption is often unrealistic, since individuals can interact with each other, either within a species or between different species. In this article, we consider a vector of point processes from the general class of interaction point processes and develop a model for CR data that can account for interactions, in particular repulsions, between and within multiple species. Interaction point processes present a challenge from an inferential perspective because of the intractability of the normalizing constant of the likelihood function, and hence standard Markov chain Monte Carlo procedures to perform Bayesian inference cannot be applied. Therefore, we adopt an inference procedure based on the Monte Carlo Metropolis Hastings algorithm, which scales well when modeling more than one species. Finally, we adopt an inference method for jointly sampling the latent ACs and the population size based on birth and death processes. This approach also allows us to adaptively tune the proposal distribution of new points, which leads to better mixing especially in the case of non-uniformly distributed traps. We apply the model to a CR data-set on leopards and tigers collected at the Corbett Tiger Reserve in India. Our findings suggest that between species repulsion is stronger than within species, while tiger population density is higher than leopard population density at the park.

Item Type: Article
DOI/Identification number: 10.1002/env.2781
Additional information: For the purpose of open access, the author has applied a CC BY public copyright licence (where permitted by UKRI, an Open Government Licence or CC BY ND public copyright licence may be used instead) to any Author Accepted Manuscript version arising.
Uncontrolled keywords: spatial capture-recapture, interaction point processes, Bayesian analysis, animal interactions
Subjects: Q Science > QA Mathematics (inc Computing science) > QA276 Mathematical statistics
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Funders: University of Kent (https://ror.org/00xkeyj56)
Depositing User: Eleni Matechou
Date Deposited: 17 Nov 2022 16:50 UTC
Last Modified: 05 Nov 2024 13:03 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/98124 (The current URI for this page, for reference purposes)

University of Kent Author Information

Diana, Alex.

Creator's ORCID:
CReDIT Contributor Roles:

Matechou, Eleni.

Creator's ORCID: https://orcid.org/0000-0003-3626-844X
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.