Radu, Petru (2013) Investigation of iris recognition in the visible spectrum. Doctor of Philosophy (PhD) thesis, University of Kent. (doi:10.22024/UniKent/01.02.94598) (KAR id:94598)
PDF
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
|
|
Download this file (PDF/9MB) |
Preview |
Official URL: https://doi.org/10.22024/UniKent/01.02.94598 |
Abstract
mong the biometric systems that have been developed so far, iris recognition systems have emerged as being one of the most reliable. In iris recognition, most of the research was conducted on operation under near infrared illumination. For unconstrained scenarios of iris recognition systems, the iris images are captured under visible light spectrum and therefore incorporate various types of imperfections. In this thesis the merits of fusing information from various sources for improving the state of the art accuracies of colour iris recognition systems is evaluated. An investigation of how fundamentally different fusion strategies can increase the degree of choice available in achieving certain performance criteria is conducted. Initially, simple fusion mechanisms are employed to increase the accuracy of an iris recognition system and then more complex fusion architectures are elaborated to further enhance the biometric system’s accuracy. In particular, the design process of the iris recognition system with reduced constraints is carried out using three different fusion approaches: multi-algorithmic, texture and colour fusion and multiple classifier systems. In the first approach, one novel iris feature extraction methodology is proposed and a multi-algorithmic iris recognition system using score fusion, composed of 3 individual systems, is benchmarked. In the texture and colour fusion approach, the advantages of fusing information from the iris texture with data extracted from the eye colour are illustrated. Finally, the multiple classifier systems approach investigates how the robustness and practicability of an iris recognition system operating on visible spectrum images can be enhanced by training individual classifiers on different iris features. Besides the various fusion techniques explored, an iris segmentation algorithm is proposed and a methodology for finding which colour channels from a colour space reveal the most discriminant information from the iris texture is introduced. The contributions presented in this thesis indicate that iris recognition systems that operate on visible spectrum images can be designed to operate with an accuracy required by a particular application scenario. Also, the iris recognition systems developed in the present study are suitable for mobile and embedded implementations.
Item Type: | Thesis (Doctor of Philosophy (PhD)) |
---|---|
DOI/Identification number: | 10.22024/UniKent/01.02.94598 |
Additional information: | This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you feel that your rights are compromised by open access to this thesis, or if you would like more information about its availability, please contact us at ResearchSupport@kent.ac.uk and we will seriously consider your claim under the terms of our Take-Down Policy (https://www.kent.ac.uk/is/regulations/library/kar-take-down-policy.html). |
Subjects: | T Technology > TK Electrical engineering. Electronics. Nuclear engineering |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
SWORD Depositor: | SWORD Copy |
Depositing User: | SWORD Copy |
Date Deposited: | 09 Jun 2023 15:33 UTC |
Last Modified: | 05 Nov 2024 12:59 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/94598 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):