Skip to main content
Kent Academic Repository

Intelligent interface agents for biometric applications

Mavity, Nick (2005) Intelligent interface agents for biometric applications. Doctor of Philosophy (PhD) thesis, University of Kent. (doi:10.22024/UniKent/01.02.94516) (KAR id:94516)

Abstract

This thesis investigates the benefits of applying the intelligent agent paradigm to biometric identity verification systems. Multimodal biometric systems, despite their additional complexity, hold the promise of providing a higher degree of accuracy and robustness. Multimodal biometric systems are examined in this work leading to the design and implementation of a novel distributed multi-modal identity verification system based on an intelligent agent framework. User interface design issues are also important in the domain of biometric systems and present an exceptional opportunity for employing adaptive interface agents. Through the use of such interface agents, system performance may be improved, leading to an increase in recognition rates over a non-adaptive system while producing a more robust and agreeable user experience. The investigation of such adaptive systems has been a focus of the work reported in this thesis.

The research presented in this thesis is divided into two main parts. Firstly, the design, development and testing of a novel distributed multi-modal authentication system employing intelligent agents is presented. The second part details design and implementation of an adaptive interface layer based on interface agent technology and demonstrates its integration with a commercial fingerprint recognition system. The performance of these systems is then evaluated using databases of biometric samples gathered during the research.

The results obtained from the experimental evaluation of the multi-modal system demonstrated a clear improvement in the accuracy of the system compared to a unimodal biometric approach. The adoption of the intelligent agent architecture at the interface level resulted in a system where false reject rates were reduced when compared to a system that did not employ an intelligent interface. The results obtained from both systems clearly express the benefits of combining an intelligent agent framework with a biometric system to provide a more robust and flexible application.

Item Type: Thesis (Doctor of Philosophy (PhD))
DOI/Identification number: 10.22024/UniKent/01.02.94516
Additional information: This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you feel that your rights are compromised by open access to this thesis, or if you would like more information about its availability, please contact us at ResearchSupport@kent.ac.uk and we will seriously consider your claim under the terms of our Take-Down Policy (https://www.kent.ac.uk/is/regulations/library/kar-take-down-policy.html).
Subjects: Q Science > QA Mathematics (inc Computing science) > QA 75 Electronic computers. Computer science
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
SWORD Depositor: SWORD Copy
Depositing User: SWORD Copy
Date Deposited: 14 Jul 2023 10:57 UTC
Last Modified: 05 Nov 2024 12:59 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/94516 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.