Bojkova, Denisa, Costa, Rui, Reus, Philipp, Bechtel, Marco, Jaboreck, Mark-Christian, Olmer, Ruth, Martin, Ulrich, Ciesek, Sandra, Michaelis, Martin, Cinatl, Jindrich and others. (2021) Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy. Metabolites, 11 (10). Article Number 699. E-ISSN 2218-1989. (doi:10.3390/metabo11100699) (KAR id:91274)
|
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
|
Download this file (PDF/2MB) |
Preview |
| Request a format suitable for use with assistive technology e.g. a screenreader | |
| Official URL: https://doi.org/10.3390/metabo11100699 |
|
| Additional URLs: |
|
Abstract
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects.
| Item Type: | Article |
|---|---|
| DOI/Identification number: | 10.3390/metabo11100699 |
| Uncontrolled keywords: | SARS-CoV-2; COVID-19; antiviral therapy; pentose phosphate pathway; oxythiamine; benfooxythiamine; 2-deoxy-d-glucose |
| Subjects: |
Q Science > QR Microbiology > QR355 Virology R Medicine > RM Therapeutics. Pharmacology |
| Institutional Unit: | Schools > School of Natural Sciences > Biosciences |
| Former Institutional Unit: |
Divisions > Division of Natural Sciences > Biosciences
|
| Depositing User: | Martin Michaelis |
| Date Deposited: | 02 Nov 2021 16:11 UTC |
| Last Modified: | 22 Jul 2025 09:08 UTC |
| Resource URI: | https://kar.kent.ac.uk/id/eprint/91274 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):

https://orcid.org/0000-0002-5710-5888
Altmetric
Altmetric