Smyth, Carol M.E., Winter, Samantha L., Dickinson, John W. (2021) Novel Real-Time OEP Phase Angle Feedback System for Dysfunctional Breathing Pattern Training—An Acute Intervention Study. Sensors, 21 (11). Article Number 3714. E-ISSN 1424-8220. (doi:10.3390/s21113714) (KAR id:89029)
PDF
Publisher pdf
Language: English |
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://dx.doi.org/10.3390/s21113714 |
Abstract
Dysfunctional breathing patterns (DBP) can have an impact on an individual’s quality of life and/or exercise performance. Breathing retraining is considered to be the first line of treatment to correct breathing pattern, for example, reducing ribcage versus abdominal movement asynchrony. Optoelectronic plethysmography (OEP) is a non-invasive 3D motion capture technique that measures the movement of the chest wall. The purpose of this study was to investigate if the use of a newly developed real-time OEP phase angle and volume feedback system, as an acute breathing retraining intervention, could result in a greater reduction of phase angle values (i.e., an improvement in movement synchrony) when compared to real-time OEP volume feedback alone. Eighteen individuals with a DBP performed an incremental cycle test with OEP measuring chest wall movement. Participants were randomly assigned to either the control group, which included the volume-based OEP feedback or to the experimental group, which included both the volume-based and phase angle OEP feedback. Participants then repeated the same cycle test using the real-time OEP feedback. The phase angle between the ribcage versus abdomen (RcAbPhase), between the pulmonary ribcage and the combined abdominal ribcage and abdomen (RCpAbPhase), and between the abdomen and the shoulders (AbSPhase) were calculated during both cycle tests. Significant increases in RcAbPhase (pre: −2.89°, post: −1.39°, p < 0.01), RCpAbPhase (pre: −2.00°, post: −0.50°, p < 0.01), and AbSPhase (pre: −2.60°, post: −0.72°, p < 0.01) were found post-intervention in the experimental group. This indicates that the experimental group demonstrated improved synchrony in their breathing pattern and therefore, reverting towards a healthy breathing pattern. This study shows for the first time that dysfunctional breathing patterns can be acutely improved with real-time OEP phase angle feedback and provides interesting insight into the feasibility of using this novel feedback system for breathing pattern retraining in individuals with DBP.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.3390/s21113714 |
Subjects: | R Medicine > RC Internal medicine > RC1200 Sports medicine |
Divisions: | Divisions > Division of Natural Sciences > Sport and Exercise Sciences |
Signature Themes: | Future Human |
Depositing User: | John Dickinson |
Date Deposited: | 05 Jul 2021 11:04 UTC |
Last Modified: | 05 Nov 2024 12:55 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/89029 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):