Yang, Weilin, Chen, Jiayu, Xu, Dezhi, Yan, Xinggang (2021) Hierarchical global fast terminal sliding-mode control for a bridge travelling crane system. IET Control Theory and Applications, 15 . pp. 814-828. ISSN 1751-8644. (doi:10.1049/cth2.12083) (KAR id:88831)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1049/cth2.12083 |
Abstract
The bridge crane system is a typical under-actuated system that is widely used in production and life. Although various scholars have conducted extensive research on the bridge crane system in recent years, there are still many problems, such as the trajectory planning of the cart and the anti-sway control of the cargo. In order to tackle the problem of the anti-sway control of the cargo, a hierarchical global fast terminal sliding-mode control (H-GFTSMC) is developed in this work. First, the Lagrange equations are used to model the system dynamics. Then, an appropriate hierarchical global fast terminal sliding-mode controller is designed to achieve anti-sway control of the cargo, and it is proved that each sliding-mode surface is progressively stable. A series of simulations were implemented to verify the effectiveness of the control method. The simulation results show that the H-GFTSMC has better control performance compared with the proportional–integral–derivative control method. When changing the cable length or adding non-negligible noise to the system, the H-GFTSMC still has good robustness.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1049/cth2.12083 |
Subjects: | T Technology |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Xinggang Yan |
Date Deposited: | 24 Jun 2021 10:53 UTC |
Last Modified: | 09 Jan 2024 06:02 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/88831 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):