Hodgkin, S.T., Harrison, D.L., Breedt, E., Wevers, T., Rixon, G., Delgado, A., Yoldas, A., Kostrzewa-Rutkowska, Z., Wyrzykowski, Ł., van Leeuwen, M., and others. (2021) Gaia Photometric Science Alerts. Astronomy & Astrophysics, 652 . Article Number A76. ISSN 0004-6361. (doi:10.1051/0004-6361/202140735) (KAR id:88549)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/13MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
PDF
Author's Accepted Manuscript
Language: English Restricted to Repository staff only |
|
Contact us about this Publication
|
|
Official URL: https://doi.org/10.1051/0004-6361/202140735 |
Abstract
Context. Since July 2014, the Gaia mission has been engaged in a high-spatial-resolution, time-resolved, precise, accurate astrometric, and photometric survey of the entire sky. Aims. We present the Gaia Science Alerts project, which has been in operation since 1 June 2016. We describe the system which has been developed to enable the discovery and publication of transient photometric events as seen by Gaia. Methods. We outline the data handling, timings, and performances, and we describe the transient detection algorithms and filtering procedures needed to manage the high false alarm rate. We identify two classes of events: (1) sources which are new to Gaiaand (2) Gaia sources which have undergone a significant brightening or fading. Validation of the Gaia transit astrometry and photometry was performed, followed by testing of the source environment to minimise contamination from Solar System objects, bright stars, and fainter near-neighbours. Results. We show that the Gaia Science Alerts project suffers from very low contamination, that is there are very few false-positives. We find that the external completeness for supernovae, CE = 0.46, is dominated by the Gaia scanning law and the requirement of detections from both fields-of-view. Where we have two or more scans the internal completeness is CI = 0.79 at 3 arcsec or larger from the centres of galaxies, but it drops closer in, especially within 1 arcsec. Conclusions. The per-transit photometry for Gaia transients is precise to 1 per cent at G = 13, and 3 per cent at G = 19. The per-transit astrometry is accurate to 55 milliarcseconds when compared to Gaia DR2. The Gaia Science Alerts project is one of the most homogeneous and productive transient surveys in operation, and it is the only survey which covers the whole sky at high spatial resolution (subarcsecond), including the Galactic plane and bulge.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1051/0004-6361/202140735 |
Uncontrolled keywords: | Astrophysics; Instrumentation and Methods for Astrophysics; Astronomical instrumentation, methods and techniques; supernovae; quasars; variables |
Subjects: | Q Science > QB Astronomy > QB460 Astrophysics |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | Dirk Froebrich |
Date Deposited: | 04 Jun 2021 12:08 UTC |
Last Modified: | 05 Nov 2024 12:54 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/88549 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):