Skip to main content
Kent Academic Repository

Applying cognitive electrophysiology to neural modelling of the attentional blink

Craston, Patrick (2008) Applying cognitive electrophysiology to neural modelling of the attentional blink. Doctor of Philosophy (PhD) thesis, University of Kent. (doi:10.22024/UniKent/01.02.86383) (KAR id:86383)

Abstract

This thesis proposes a connection between computational modelling of cognition and cognitive electrophysiology. We extend a previously published neural network model of working memory and temporal attention (Simultaneous Type Serial Token (ST2 ) model ; Bowman & Wyble, 2007) that was designed to simulate human behaviour during the attentional blink, an experimental nding that seems to illustrate the temporal limits of conscious perception in humans. Due to its neural architecture, we can utilise the ST2 model's functionality to produce so-called virtual event-related potentials (virtual ERPs) by averaging over activation proles of nodes in the network. Unlike predictions from textual models, the virtual ERPs from the ST2 model allow us to construe formal predictions concerning the EEG signal and associated cognitive processes in the human brain. The virtual ERPs are used to make predictions and propose explanations for the results of two experimental studies during which we recorded the EEG signal from the scalp of human participants. Using various analysis techniques, we investigate how target items are processed by the brain depending on whether they are presented individually or during the attentional blink. Particular emphasis is on the P3 component, which is commonly regarded as an EEG correlate of encoding items into working memory and thus seems to re ect conscious perception. Our ndings are interpreted to validate the ST2 model and competing theories of the attentional blink. Virtual ERPs also allow us to make predictions for future experiments. Hence, we show how virtual ERPs from the ST2 model provide a powerful tool for both experimental design and the validation of cognitive models.

Item Type: Thesis (Doctor of Philosophy (PhD))
Thesis advisor: Bowman, Howard
DOI/Identification number: 10.22024/UniKent/01.02.86383
Additional information: This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you feel that your rights are compromised by open access to this thesis, or if you would like more information about its availability, please contact us at ResearchSupport@kent.ac.uk and we will seriously consider your claim under the terms of our Take-Down Policy (https://www.kent.ac.uk/is/regulations/library/kar-take-down-policy.html).
Uncontrolled keywords: Software, computer programming
Subjects: Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming,
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
SWORD Depositor: SWORD Copy
Depositing User: SWORD Copy
Date Deposited: 29 Oct 2019 16:56 UTC
Last Modified: 28 Jan 2022 15:09 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/86383 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.