Skip to main content
Kent Academic Repository

A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function.

Baines, Anthony J. (2006) A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function. BMC Genomics, 7 . Article 85. ISSN 1471-2164. (doi:10.1186/1471-2164-7-85) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:8626)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1186/1471-2164-7-85

Abstract

BACKGROUND: Proteins containing FERM domains comprise a diverse group of eukaryotic proteins that bind membrane proteins and lipids. In doing so, they organise membrane microstructure, and coordinate the disposition of signalling and cell adhesion complexes. In protein 4.1R, phosphorylation adjacent to the FERM domain regulates its activity, and membrane mechanical properties. RESULTS: A novel sequence domain has been detected in a subset of proteins that contain FERM domains. This subset includes the true 4.1 proteins, some tyrosine phosphatases, rho-GEF proteins and type II transmembrane proteins, as well as some uncharacterised FERM proteins. This FERM-adjacent region is always closely proximate to the C-terminal of the FERM domain. This sequence is likely to be folded with elements of alpha and beta structure. The FERM-adjacent region of 4.1R contains serine residues phosphorylated by PKC and PKA; these appear conserved in about half of all other FERM-adjacent regions. Phylogenetic analyses indicate that all proteins containing a FERM-adjacent region arose from a single ancestor after FERM domains had started to proliferate in genomes of animals, plants and mycetozoa. CONCLUSION: The FERM-adjacent region defines a subset of the FERM proteins in animals. The conservation of motifs in this region that are potential substrates for kinases together with the known regulatory phosphorylation of 4.1R in this region raises the possibility that the FERM-adjacent region is a regulatory adaptation in this subset of the FERM proteins.

Item Type: Article
DOI/Identification number: 10.1186/1471-2164-7-85
Additional information: Article Number: 85
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Biosciences
Depositing User: Anthony Baines
Date Deposited: 05 Sep 2008 06:30 UTC
Last Modified: 05 Nov 2024 09:41 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/8626 (The current URI for this page, for reference purposes)

University of Kent Author Information

Baines, Anthony J..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.