Zare Oskouei, Morteza, Mohammadi-Ivatloo, Behnam, Abapour, Mehdi, Shafiee, Mahmood, Anvari-Moghaddam, Amjad (2020) Privacy-Preserving Mechanism for Collaborative Operation of High-Renewable Power Systems and Industrial Energy Hubs. Applied Energy, 283 . Article Number 116338. ISSN 0306-2619. (doi:10.1016/j.apenergy.2020.116338) (KAR id:85752)
PDF
Author's Accepted Manuscript
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
|
|
Download this file (PDF/2MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://dx.doi.org/10.1016/j.apenergy.2020.116338 |
Abstract
Nowadays, achieving operational solutions to boost the flexibility of bulk power systems has become one of the major challenges in both industry and academia. The outcomes of recent studies demonstrate that the deployment of large-scale energy hubs can help enhance the flexibility of power systems. However, centralized management of networked energy hubs may not be compatible with the power system operator when they are managed by private owners. Motivated by this observation, a privacy-preserving decision-making structure is proposed in this paper for the collaborative operation of private industrial energy hubs and renewable power system by considering the high penetration of renewable energy sources. The proposed structure is drawn up based on the decentralized two-stage robust–stochastic approach and solved using the Benders decomposition algorithm by relying on the private ownership of various entities. The main objectives of this study lie in (1) decreasing renewable power curtailment and (2) minimizing the total operation costs of the private entities. To achieve these objectives, the effects of the multi-energy demand response program and energy conversion facilities are investigated in the context of the developed model. The competency and robustness of the proposed collaborative decision-making structure are examined on the IEEE 30-bus test system using GAMS and DIgSILENT PowerFactory software. Results show that if industrial energy hubs are successfully deployed in industrial parks, the total operation cost of the renewable power system decreases by up to 16.33%, renewable power curtailment reduces by 92.9%, and flexibility of the renewable power system enhances by increasing spinning reserve.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1016/j.apenergy.2020.116338 |
Uncontrolled keywords: | Benders decomposition; Demand response programs; Energy storage systems; Energy hub systems; Privacy-preserving collaboration; Renewable power curtailment |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Mahmood Shafiee |
Date Deposited: | 29 Jan 2021 20:48 UTC |
Last Modified: | 05 Nov 2024 12:51 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/85752 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):