Skip to main content
Kent Academic Repository

A normalisation approach improves the performance of inter-subject sEMG-based hand gesture recognition with a ConvNet

Lin, Yuzhou, Ramaswamy, Palaniappan, De Wilde, Philippe, Li, Ling (2020) A normalisation approach improves the performance of inter-subject sEMG-based hand gesture recognition with a ConvNet. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). (doi:10.1109/EMBC44109.2020.9175156) (KAR id:83026)

Abstract

Recently, the subject-specific surface electromyography (sEMG)-based gesture classification with deep learning algorithms has been widely researched. However, it is not practical to obtain the training data by requiring a user to perform hand gestures many times in real life. This problem can be alleviated to a certain extent if sEMG from many other subjects could be used to train the classifier. In this paper, we propose a normalisation approach that allows implementing real-time subject-independent sEMG based hand gesture classification without training the deep learning algorithm subject specifically. We hypothesed that the amplitude ranges of sEMG across channels between forearm muscle contractions for a hand gesture recorded in the same condition do not vary significantly within each individual. Therefore, the min-max normalisation is applied to source domain data but the new maximum and minimum values of each channel used to restrict the amplitude range are calculated from a trial cycle of a new user (target domain) and assigned by the class label. A convolutional neural network (ConvNet) trained with the normalised data achieved an average 87.03 accuracy on our G. dataset (12 gestures) and 94.53 on M. dataset (7 gestures) by using the leave-one-subject-out cross-validation.

Item Type: Conference or workshop item (Speech)
DOI/Identification number: 10.1109/EMBC44109.2020.9175156
Uncontrolled keywords: Training; Gesture recognition; Training data; Machine learning; Muscles; Probability density function; Standards
Subjects: Q Science > Q Science (General)
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Caroline Li
Date Deposited: 19 Sep 2020 18:26 UTC
Last Modified: 05 Nov 2024 12:48 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/83026 (The current URI for this page, for reference purposes)

University of Kent Author Information

Lin, Yuzhou.

Creator's ORCID:
CReDIT Contributor Roles:

Ramaswamy, Palaniappan.

Creator's ORCID: https://orcid.org/0000-0001-5296-8396
CReDIT Contributor Roles:

De Wilde, Philippe.

Creator's ORCID: https://orcid.org/0000-0002-4332-1715
CReDIT Contributor Roles:

Li, Ling.

Creator's ORCID: https://orcid.org/0000-0002-4026-0216
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.