Skip to main content
Kent Academic Repository

An Integrated Bayesian Network and Cost-Benefit Analysis Model for Blowout Preventer Configuration Selection in Deepwater Offshore Fields

Enjema, E.M and Shafiee, M. and Kolios, A. (2018) An Integrated Bayesian Network and Cost-Benefit Analysis Model for Blowout Preventer Configuration Selection in Deepwater Offshore Fields. In: Haugen, Stein and Barros, Anne and Gulijk, Coen van and Kongsvik, Trond and Vinnem, Jan Erik, eds. Safety and Reliability – Safe Societies in a Changing World. Proceedings of ESREL 2018, June 17-21 2018, Trondheim, Norway. CRC Press, London, pp. 2007-2012. ISBN 978-0-8153-8682-7. E-ISBN 978-1-351-17466-4. (doi:10.1201/9781351174664) (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided) (KAR id:79971)

PDF Author's Accepted Manuscript
Language: English

Restricted to Repository staff only
Contact us about this Publication
[thumbnail of ESREL_ENJEMA 2018.pdf]
Official URL:
https://doi.org/10.1201/9781351174664

Abstract

Due to the capital intensive nature, limited supply quantities, infeasible and unviable prospects, among several other setbacks of other emergent energy sources, huge importance continues to be placed on Blowout Preventers (BOPs), the principal defense mechanism against blowouts during any drilling/workover operation in the oil and gas sector. Particularly so after the Macondo disaster, BOPs have been the center of regulatory change and sector development. BOP availability and reliability become even more important as drilling advances into deep and ultra-deep water offshore fields. The BOP configuration choice for such variable environments will have far reaching consequences. Reliability, though hugely important and vital, is one of the several criteria that operators must use for determining the most cost-effective configuration as the cost of accidents in deeper waters increases proportionately. In the current paper, an integrated framework for the selection of the most appropriate BOP configuration in deep and ultra-deep water conditions is proposed. The framework captures all evaluation criteria such as BOP reliability, handling/deployability, overall weight and CAPEX/OPEX ratio. Appropriate mathematical and evaluation tools such as Bayesian Network (BN) and Lifecycle Cost Analysis (LCCA) are employed to evaluate different configurations. The models are applied to a commonly used CLASS VII subsea BOPs in deeper waters. The results indicate that configuration 1 (with 2 annular, 2 pipe rams, 1 blind shear ram, 1 casing shear ram) is slightly less reliable than configuration 2 (with 1 annular, 2 pipe rams, 1 blind shear ram, 2 casing shear rams), however, the operation and maintenance (O&M) costs are higher for the latter configuration. Our framework can serve as a valuable decision making tool for BOP stakeholders as varying facets of information regarding the device are obtained.

Item Type: Book section
DOI/Identification number: 10.1201/9781351174664
Uncontrolled keywords: Blowout Preventers, oil drilling, gas drilling
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA165 Engineering instruments, meters etc. Industrial instrumentation
T Technology > TA Engineering (General). Civil engineering (General) > TA401 Materials engineering and construction
T Technology > TJ Mechanical engineering and machinery
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts
Depositing User: Mahmood Shafiee
Date Deposited: 07 Feb 2020 00:34 UTC
Last Modified: 18 Mar 2022 23:10 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/79971 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.