Skip to main content
Kent Academic Repository

Measurement-driven analog of adiabatic quantum computation for frustration-free Hamiltonians

Zhao, Liming, Pérez-Delgado, Carlos A, Benjamin, Simon C., Fitzsimons, Joseph F. (2019) Measurement-driven analog of adiabatic quantum computation for frustration-free Hamiltonians. Physical Review A, 100 (3). Article Number 032331. ISSN 2469-9926. (doi:10.1103/PhysRevA.100.032331) (KAR id:78089)

Abstract

The adiabatic quantum algorithm has drawn intense interest as a potential approach to accelerating optimization tasks using quantum computation. The algorithm is most naturally realized in systems which support Hamiltonian evolution rather than discrete gates. We explore an alternative approach in which slowly varying measurements are used to mimic adiabatic evolution. We show that, for certain Hamiltonians, which remain frustration free all along the adiabatic path, the necessary measurements can be implemented through the measurement of random terms from the Hamiltonian. This offers a potentially more viable method of realizing adiabatic evolution in gate-based quantum computer architectures.

Item Type: Article
DOI/Identification number: 10.1103/PhysRevA.100.032331
Uncontrolled keywords: Quantum Computation, Quantum Measurement, Adiabatic Quantum Computation, Measurement-Based Quantum Computation, Quantum Zeno Effect
Subjects: Q Science > QC Physics > QC174.12 Quantum theory
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Carlos Perez Delgado
Date Deposited: 30 Oct 2019 23:06 UTC
Last Modified: 04 Mar 2024 15:23 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/78089 (The current URI for this page, for reference purposes)

University of Kent Author Information

Pérez-Delgado, Carlos A.

Creator's ORCID: https://orcid.org/0000-0003-3536-2549
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.