Brown, B. Malcolm, Klaus, Martin, Malamud, Mark, Mogilevskii, Vadim, Wood, Ian (2019) Weyl Solutions and \(j\)-selfadjointness for Dirac Operators. Journal of Mathematical Analysis and Applications, 480 (2). Article Number 123344. ISSN 0022-247X. (doi:10.1016/j.jmaa.2019.07.034) (KAR id:75785)
PDF
Author's Accepted Manuscript
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
|
|
Download this file (PDF/417kB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1016/j.jmaa.2019.07.034 |
Abstract
We consider a non-selfadjoint Dirac-type differential expression
$$(0.1)D(Q)y := J_n {dy \over dx} +Q(x)y$$
with a non-selfadjoint potential matrix \(Q\) \(\epsilon\) \(L\) \(^{1}_{loc}(\scr J, \Bbb C^{n \times n})\) and a signature matrix \(J_n=-J^{-J}_n=-J^*_n\) \(\epsilon\) \(\Bbb C ^{n \times n}\). Here \(\scr J\) denotes either the line \(\Bbb R\) or the half-line \(\Bbb R_+\). With this differential expression one associates in \(L^2(\scr J, \Bbb C^n)\) the (closed) maximal and minimal operators \(D_{max}(Q)\) and \(D_{min}(Q)\), respectively. One of our main results for the whole line case states that \(D_{max}(Q)=D_{min}(Q)\) in \(L^2\) \(\Bbb R, \Bbb C^n\). Moreover, we show that if the minimal operator \(D_{min}(Q)\) in \(L^2(\Bbb R, \Bbb C^n)\) is \(j\)-symmetric with respect to an appropriate involution \(j\), then it is \(j\)-selfadjoint. Similar results are valid in the case of the semiaxis \(\Bbb R_+\). In particular, we show that if \(n=2p\) and the minimal operator \(D^+_{min}(Q)\) in \(L^2(\Bbb R_+,\Bbb C^{2p})\) is (\j\)-symmetric, then there exists a \(2p \times p-\)Weyl-type matrix solution.
\(\Psi(z,\cdot) \) \(\epsilon\) \(L^2(\Bbb R_+, \Bbb C^{2p \times p})\) of the equation \(D^+_{max}(Q)\Psi(z,\cdot)=z \Psi(z,\cdot)\). A similar result is valid for the expression (0.1) whenever there exists a proper extension \(\tilde A\) with dim (dom \(\tilde A\)/dom \(D^+_{min}(Q))=p\) and nonempty resolvent set. In particular, it holds if a potential matrix (\Q\) has a bounded imaginary part. This leads to the existence of a unique Weyl function for the express (0.1). The main results are proven by means of a reduction to the self-adjoint case by using the technique of dual pairs of operators. The differential expression (0.1) is of significance as it appears in the Lax formulation of the vector valued nonlinear Schrödinger equation.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1016/j.jmaa.2019.07.034 |
Uncontrolled keywords: | Dirac-type operator, j-selfadjointness, Weyl solution, Weyl function, dual pair of operators |
Subjects: | Q Science > QA Mathematics (inc Computing science) |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science |
Depositing User: | Ian Wood |
Date Deposited: | 13 Aug 2019 10:35 UTC |
Last Modified: | 05 Nov 2024 12:40 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/75785 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):