Cesaroni, R., Beuther, H., Ahmadi, A., Beltran, M.T., Csengeri, T., Galvan-Madrid, R., Gieser, C., Henning, T., Johnston, K.G., Klaassen, P. D., and others. (2019) IRAS 23385+6053: An embedded massive cluster in the making. Astronomy and Astrophysics, 627 . Article Number 68. ISSN 0004-6361. (doi:10.1051/0004-6361/201935506) (KAR id:74143)
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/1MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1051/0004-6361/201935506 |
Abstract
Context. This study is part of the project “CORE”, an IRAM/NOEMA large program consisting of observations of the millimeter continuum and molecular line emission towards 20 selected high-mass star forming regions. The goal of the program is to search for circumstellar accretion disks, study the fragmentation process of molecular clumps, and investigate the chemical composition of the gas in these regions.
Aims. We focus on IRAS 23385+6053, which is believed to be the least evolved source of the CORE sample. This object is characterized by a compact molecular clump that is IR dark shortward of 24 µm and is surrounded by a stellar cluster detected in the near-IR. Our aim is to study the structure and velocity field of the clump.
Methods. The observations were performed at ∼1.4 mm and employed three configurations of NOEMA and additional single-dish maps, merged with the interferometric data to recover the extended emission. Our correlator setup covered a number of lines from well-known hot core tracers and a few outflow tracers. The angular (∼0.′′45–0.′′9) and spectral (0.5 km s−1) resolutions were sufficient to resolve the clump in IRAS 23385+6053 and investigate the existence of large-scale motions due to rotation, infall, or expansion.
Results. We find that the clump splits into six distinct cores when observed at sub-arcsecond resolution. These are identified through their 1.4 mm continuum and molecular line emission. We produce maps of the velocity, line width, and rotational temperature from the methanol and methyl cyanide lines, which allow us to investigate the cores and reveal a velocity and temperature gradient in the most massive core. We also find evidence of a bipolar outflow, possibly powered by a low-mass star. Conclusions. We present the tentative detection of a circumstellar self-gravitating disk lying in the most massive core and powering a largescale outflow previously known in the literature. In our scenario, the star powering the flow is responsible for most of the luminosity of IRAS 23385+6053 (∼3000 L⊙). The other cores, albeit with masses below the corresponding virial masses, appear to be accreting material
from their molecular surroundings and are possibly collapsing or on the verge of collapse. We conclude that we are observing a sample of star-forming cores that is bound to turn into a cluster of massive stars.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1051/0004-6361/201935506 |
Uncontrolled keywords: | Stars: early-type – Stars: formation – Stars: massive – ISM individual objects: IRAS 23385+6053 |
Subjects: | Q Science > QB Astronomy |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | James Urquhart |
Date Deposited: | 28 May 2019 14:37 UTC |
Last Modified: | 05 Nov 2024 12:37 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/74143 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):