Andreotti, Fernando, Phan, Huy, De Vos, Maarten (2018) Visualising Convolutional Neural Network Decisions in Automatic Sleep Scoring. In: CEUR Workshop Proceedings. Joint Workshop on Artificial Intelligence in Health (AIH) 2018. . pp. 70-81. CEUR Workshop Proceedings, Stockholm, Sweden (KAR id:72666)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/758kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://ceur-ws.org/Vol-2142/paper5.pdf |
Abstract
Current sleep medicine relies on the supervised analysis of polysomnographic recordings, which comprise amongst others electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) signals. Convolutional neural networks (CNN) provide an interesting framework for automated sleep classification, however, the lack of interpretability of its results has hampered CNN's further use in medicine. In this study, we train a CNN using as input Continuous Wavelet transformed EEG, EOG and EMG recordings from a publicly available dataset. The network achieved a 10-fold cross-validation Cohen's Kappa score of $\kappa = 0.71 \pm 0.01$. Further, we provide insights on how this network classifies individual epochs of sleep using Guided Gradient-weighted Class Activation Maps (Guided Grad-CAM). The proposed approach is able to produce fine-grained activation maps on time-frequency domain for each signal providing a useful tool for identifying relevant features in CNNs.
Item Type: | Conference or workshop item (Paper) |
---|---|
Uncontrolled keywords: | Convolutional Neural Networks, Class Activation Maps, Guided Backpropagation, Polysomnography, Wavelet Transform |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Huy Phan |
Date Deposited: | 25 Feb 2019 14:39 UTC |
Last Modified: | 05 Nov 2024 12:35 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/72666 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):