Phan, Huy, Andreotti, Fernando, Cooray, Navin, Chén, Oliver Y., De Vos, Maarten (2018) Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification. IEEE Transactions on Biomedical Engineering, . ISSN 0018-9294. (doi:10.1109/TBME.2018.2872652) (KAR id:72662)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/798kB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
PDF
Author's Accepted Manuscript
Language: English Restricted to Repository staff only |
|
Contact us about this Publication
|
|
Official URL: http://dx.doi.org/10.1109/TBME.2018.2872652 |
Abstract
Correctly identifying sleep stages is important in diagnosing and treating sleep disorders. This work proposes a joint classification-and-prediction framework based on convolutional neural networks (CNNs) for automatic sleep staging, and, subsequently, introduces a simple yet efficient CNN architecture to power the framework. Given a single input epoch, the novel framework jointly determines its label (classification) and its neighboring epochs' labels (prediction) in the contextual output. While the proposed framework is orthogonal to the widely adopted classification schemes, which take one or multiple epochs as contextual inputs and produce a single classification decision on the target epoch, we demonstrate its advantages in several ways. First, it leverages the dependency among consecutive sleep epochs while surpassing the problems experienced with the common classification schemes. Second, even with a single model, the framework has the capacity to produce multiple decisions, which are essential in obtaining a good performance as in ensemble-of-models methods, with very little induced computational overhead. Probabilistic aggregation techniques are then proposed to leverage the availability of multiple decisions. To illustrate the efficacy of the proposed framework, we conducted experiments on two public datasets: Sleep-EDF Expanded (Sleep-EDF), which consists of 20 subjects, and Montreal Archive of Sleep Studies (MASS) dataset, which consists of 200 subjects. The proposed framework yields an overall classification accuracy of 82.3% and 83.6%, respectively. We also show that the proposed framework not only is superior to the baselines based on the common classification schemes but also outperforms existing deep-learning approaches. To our knowledge, this is the first work going beyond the standard single-output classification to consider multitask neural networks for automatic sleep staging. This framework provides avenues for further studies of different neural-network architectures for automatic sleep staging.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1109/TBME.2018.2872652 |
Uncontrolled keywords: | sleep stage classification, joint classification and prediction, convolutional neural network, multi-task |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Funders: |
NIHR Oxford Musculoskeletal Biomedical Research Centre (https://ror.org/00aps1a34)
Organisations -1 not found. |
Depositing User: | Huy Phan |
Date Deposited: | 22 Feb 2019 10:45 UTC |
Last Modified: | 05 Nov 2024 12:35 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/72662 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):