Skip to main content
Kent Academic Repository

¹H, ¹?N, and ¹³C backbone chemical shift assignment of titin domains A59-A60 and A60 alone

Czajlik, A, Thompson, GS, Khan, GN, Kalverda, AP, Homans, SW, Trinick, J (2014) ¹H, ¹?N, and ¹³C backbone chemical shift assignment of titin domains A59-A60 and A60 alone. Biomolecular NMR assignments, 8 . pp. 429-433. ISSN 1874-2718. (doi:10.1007/s12104-013-9532-0) (KAR id:71800)

Abstract

The giant protein titin is the third most abundant protein of vertebrate striated muscle. The titin molecule is > 1 ?m long and spans half the sarcomere, from the Z-disk to the M-line, and has important roles in sarcomere assembly, elasticity and intracellular signaling. In the A-band of the sarcomere titin is attached to the thick filaments and mainly consists immunoglobulin-like and fibronectin type III-like domains. These are mostly arranged in long-range patterns or 'super-repeats'. The large super-repeats each contain 11 domains and are repeated 11 times, thus forming nearly half the titin molecule. Through interactions with myosin and C-protein, they are involved in thick filament assembly. The importance of titin in muscle assembly is highlighted by the effect of mutations in the A-band portion, which are the commonest cause of dilated cardiomyopathy, affecting ~1 in 250 (Herman et al. in N Engl J Med 366:619-628, 2012). Here we report backbone (15)N, (13)C and (1)H chemical shift and (13)C? assignments for the A59-A60 domain tandem from the titin A59-A69 large super-repeat, completed using triple resonance NMR. Since, some regions of the backbone remained unassigned in A60 domain of the complete A59-A60 tandem, a construct containing a single A60 domain, A60sd, was also studied using the same methods. Considerably improved assignment coverage was achieved using A60sd due to its lower mass and improved molecular tumbling rate; these assignments also allowed the analysis of inter-domain interactions using chemical shift mapping against A59-A60.

Item Type: Article
DOI/Identification number: 10.1007/s12104-013-9532-0
Subjects: Q Science > QP Physiology (Living systems) > QP517 Biochemistry
Divisions: Divisions > Division of Natural Sciences > Biosciences
Depositing User: Gary Thompson
Date Deposited: 23 Jan 2019 21:10 UTC
Last Modified: 30 May 2019 08:47 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/71800 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.