Greenland, William E. P., Howland, Kevin, Hardy, Judith, Fogelman, Ignac, Blower, Philip J. (2003) Solid-phase synthesis of peptide radiopharmaceuticals using Fmoc-N-epsilon-(hynic-Boc)-lysine, a technetium-binding amino acid: application to Tc-99m-labeled salmon calcitonin. Journal of Medicinal Chemistry, 46 (9). pp. 1751-1757. ISSN 0022-2623. (doi:10.1021/jm030761n) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:7163)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
Official URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=... |
Abstract
Labeling of proteins with metallic radionuclides for use in radiopharmaceuticals involves covalently attaching a bifunctional chelator. In principle, use of smaller peptides allows this chelator to be incorporated during solid-phase peptide synthesis (SPPS) with total site specificity. To realize the advantages of this approach, a lysine-hynic conjugate Fmoc-N-epsilon-(Hynic-Boc)-Lys was synthesized for incorporating the well-known technetium-99m-binding hydrazinonicotinamide ligand into peptides during SPPS. It was used to synthesize a technetium-99m-labeled salmon calcitonin with the hynic-linked amino acid in place of lysine-18. A trifluoroacetate group protected the hynic during alkaline oxidation to the cyclic disulfide and was readily removed by mild acid treatment. The peptide was efficiently labeled (91-98% radiochemical yield) with Tc-99m in the presence of tricine and SnCl(2) with high specific activity (>100 MBq/microg). The product showed good serum stability and specific affinity for human calcitonin receptors. Fmoc-N-epsilon-(Hynic-Boc)-Lys is a highly versatile technetium-binding amino acid for incorporation into peptides during SPPS. This allows total flexibility and control in the site of attachment and is suitable for a combinatorial approach to peptide radiopharmaceuticals.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1021/jm030761n |
Additional information: | 0022-2623 (Print) Journal Article |
Uncontrolled keywords: | Calcitonin/*chemistry Chelating Agents/chemical synthesis/chemistry Chromatography, High Pressure Liquid Humans Hydrazines/chemistry Isotope Labeling Lysine/analogs & derivatives/*chemical synthesis/chemistry/metabolism Nicotinic Acids/*chemical synthesis/chemistry/metabolism Radiopharmaceuticals/*chemical synthesis/chemistry/metabolism Receptors, Calcitonin/metabolism Spectrometry, Mass, Electrospray Ionization *Technetium Tumor Cells, Cultured |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Biosciences |
Depositing User: | Susan Davies |
Date Deposited: | 10 Sep 2008 10:07 UTC |
Last Modified: | 05 Nov 2024 09:39 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/7163 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):