Jiang, Yuxiang, Oron, Tal Ronnen, Clark, Wyatt T, Bankapur, Asma R, D'Andrea, Daniel, Lepore, Rosalba, Funk, Christopher S, Kahanda, Indika, Verspoor, Karin M, Ben-Hur, Asa, and others. (2016) An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome biology, 17 (1). Article Number 184. ISSN 1474-760X. (doi:10.1186/s13059-016-1037-6) (KAR id:71377)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/3MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1186/s13059-016-1037-6 |
Abstract
BACKGROUND
A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging.
RESULTS
We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2.
CONCLUSIONS
The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1186/s13059-016-1037-6 |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Biosciences |
Depositing User: | Mark Wass |
Date Deposited: | 20 Dec 2018 12:53 UTC |
Last Modified: | 09 Dec 2022 09:33 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/71377 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):