Degasperis, A., Holm, Darryl D., Hone, Andrew N.W. (2002) A new integrable equation with peakon solutions. Theoretical and Mathematical Physics, 133 (2). pp. 1463-1474. ISSN 0040-5779. (doi:10.1023/A:1021186408422) (KAR id:684)
PDF (New Integrable Equation)
Language: English |
|
Download this file (PDF/1MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1023/A:1021186408422 |
Abstract
We consider a new partial differential equation recently obtained by Degasperis and Procesi using the method of asymptotic integrability; this equation has a form similar to the Camassa-Holm shallow water wave equation. We prove the exact integrability of the new equation by constructing its Lax pair and explain its relation to a negative flow in the Kaup-Kupershmidt hierarchy via a reciprocal transformation. The infinite sequence of conserved quantities is derived together with a proposed bi-Hamiltonian structure, The equation admits exact solutions as a superposition of multipeakons, and we describe the integrable finite-dimensional peakon dynamics and compare it with the analogous results for Camassa-Holm peakons.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1023/A:1021186408422 |
Uncontrolled keywords: | peakons; reciprocal transformations; weak solutions |
Subjects: | Q Science > QA Mathematics (inc Computing science) |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science |
Depositing User: | Andrew Hone |
Date Deposited: | 19 Dec 2007 18:25 UTC |
Last Modified: | 05 Nov 2024 09:30 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/684 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):