White, Lisa J., Tyuleva, Stilyana N., Wilson, Ben, Shepherd, H.J., Ng, Kendrick K. L., Holder, Simon J., Clark, Ewan R., Hiscock, Jennifer R. (2018) Towards the prediction of global solution state properties for hydrogen bonded, self-associating amphiphiles. Chemistry - A European Journal, 24 (30). pp. 7761-7773. ISSN 0947-6539. E-ISSN 1521-3765. (doi:10.1002/chem.201801280) (KAR id:66639)
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
PDF
Publisher pdf
Language: English Restricted to Repository staff only |
|
Contact us about this Publication
|
|
Official URL: https://doi.org/10.1002/chem.201801280 |
Abstract
Through this extensive structure-property study we show that critical micelle concentration correlates with self-associative hydrogen bond complex formation constant, when combined with outputs from low level, widely accessible, computational models. Herein, we bring together a series of 39 structurally related molecules obtained through stepwise variation of a hydrogen bond donor-acceptor amphiphilic salt. The self-associative and corresponding global properties for this family of compounds have been studied in the gas, solid and solution states. Within the solution state we have shown the type of self-associated structure present to be solvent dependent. In DMSO, this class of compound show a preference for hydrogen bonded dimer formation, however moving into aqueous solutions the same compounds are found to form larger self-associated aggregates. This observation has allowed us the unique opportunity to investigate and begin to predict selfassociation events at both the molecular and extended aggregate level.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1002/chem.201801280 |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | Jennifer Hiscock |
Date Deposited: | 06 Apr 2018 09:53 UTC |
Last Modified: | 05 Nov 2024 11:05 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/66639 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):