Wang, Guoqing, Yan, Zhijun, Yang, Lei, Zhang, Lin, Wang, Chao (2018) Improved resolution optical time stretch imaging based on high efficiency in-fiber diffraction. Scientific Reports, 8 . Article Number 600. ISSN 2045-2322. (doi:10.1038/s41598-017-18920-8) (KAR id:65562)
PDF
Author's Accepted Manuscript
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/1MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://www.nature.com/articles/s41598-017-18920-8 |
Abstract
Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space di?raction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1038/s41598-017-18920-8 |
Subjects: | T Technology > TK Electrical engineering. Electronics. Nuclear engineering > TK5101 Telecommunications > TK5103.59 Optical communications |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Chao Wang |
Date Deposited: | 20 Dec 2017 12:08 UTC |
Last Modified: | 05 Nov 2024 11:03 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/65562 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):