Skip to main content
Kent Academic Repository

Biorhythms, deciduous enamel thickness, and primary bone growth in modern human children: a test of the Havers-Halberg Oscillation hypothesis

Mahoney, Patrick, Miszkiewicz, Justyna J., Pitfield, Rosie, Schlecht, Stephen H., Deter, Chris, Guatelli-Steinberg, Debbie (2016) Biorhythms, deciduous enamel thickness, and primary bone growth in modern human children: a test of the Havers-Halberg Oscillation hypothesis. In: American Journal of Physical Anthropology. Supplement: Program of the 85th Annual Meeting of the American Association of Physical Anthropologists. 159 (S62). Wiley (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:64371)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://meeting.physanth.org/program/2016/session12...

Abstract

Across mammalian species, the periodicity with which enamel layers form (Retzius periodicity) in permanent teeth corresponds with average body mass and the pace of life history. According to the Havers-Halberg Oscillation hypothesis (HHO), Retzius periodicity (RP) is a manifestation of a biorhythm that is also expressed in lamellar bone. Potentially, these links provide a basis for investigating aspects of a species’ biology from fossilized teeth. Here, we tested intra-specific predictions of this hypothesis on skeletal samples of modern human juveniles. We measured daily enamel growth increments to calculate RP in deciduous molars (n=25). Correlations were sought between RP, molar average enamel thickness (AET), and the average amount of primary bone growth in humeri from age-matched juveniles.

Results show a previously un-described relationship between RP and enamel thickness. Reduced major axis regression reveals RP is significantly and positively correlated with AET, and scales isometrically. The scaling relationship could not be explained through body mass. Juveniles with higher RPs and thicker enamel had more primary bone formation, which suggests a coordinating biorhythm. However, the direction of the correspondence was opposite to that predicted by the HHO. Next, we compared RP from deciduous molars to new data for permanent molars, and previously published values. The lowermost RP of four and five days in deciduous enamel was less than the lowermost value of six days in permanent enamel. A lowered range of RP values in deciduous enamel indicates that the underlying biorhythm might change with age. Our results develop the HHO.

Item Type: Conference or workshop item (Poster)
Divisions: Divisions > Division of Human and Social Sciences > School of Anthropology and Conservation
Depositing User: Patrick Mahoney
Date Deposited: 13 Nov 2017 16:08 UTC
Last Modified: 05 Nov 2024 11:01 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/64371 (The current URI for this page, for reference purposes)

University of Kent Author Information

Mahoney, Patrick.

Creator's ORCID: https://orcid.org/0000-0002-2715-3096
CReDIT Contributor Roles:

Miszkiewicz, Justyna J..

Creator's ORCID:
CReDIT Contributor Roles:

Pitfield, Rosie.

Creator's ORCID:
CReDIT Contributor Roles:

Deter, Chris.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.