Hannah, Stuart, Cardona, Javier, Lamprou, Dimitrios A., Šutta, Pavol, Baran, Peter, Al Ruzaiqi, Afra, Johnston, Karen, Gleskova, Helena (2016) Interplay between Vacuum-Grown Monolayers of Alkylphosphonic Acids and the Performance of Organic Transistors Based on Dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene. ACS Applied Materials & Interfaces, 8 (38). pp. 25405-25414. ISSN 1944-8244. E-ISSN 1944-8252. (doi:10.1021/acsami.6b08426) (KAR id:63483)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/445kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1021/acsami.6b08426 |
Abstract
Monolayers of six alkylphosphonic acids ranging from C8 to C18 were prepared by vacuum evaporation and incorporated into low-voltage organic field-effect transistors based on dinaphtho[2,3-b:2?,3?-f ]thieno[3,2-b]thiophene (DNTT). Similar to solution-assembled monolayers, the molecular order for vacuum-deposited monolayers improved with increasing length of the aliphatic tail. At the same time, Fourier transform infrared (FTIR) measurements suggested lower molecular coverage for longer phosphonic acids. The comparison of FTIR and vibration frequencies calculated by density functional theory indicated that monodentate bonding does not occur for any phosphonic acid. All monolayers exhibited low surface energy of ?17.5 mJ/m2 with a dominating Lifshitz?van der Waals component. Their surface roughness was comparable, while the nanomechanical properties were varied but not correlated to the length of the molecule. However, large improvement in transistor performance was observed with increasing length of the aliphatic tail. Upon going from C8 to C18, the mean threshold voltage decreased from ?1.37 to ?1.24 V, the field-effect mobility increased from 0.03 to 0.33 cm2/(V·s), the off-current decreased from ?8 × 10?13 to ?3 × 10?13 A, and for transistors with L = 30 ?m the on-current increased from ?3 × 10?8 to ?2 × 10?6 A, and the on/off-current ratio increased from ?3 × 104 to ?4 × 106. Similarly, transistors with longer phosphonic acids exhibited much better air and bias-stress stability. The achieved transistor performance opens up a completely “dry” fabrication route for ultrathin dielectrics and low-voltage organic transistors.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1021/acsami.6b08426 |
Uncontrolled keywords: | organic field-effect transistors, alkylphosphonic acids, monolayers, DNTT, bias stress |
Divisions: | Divisions > Division of Natural Sciences > Medway School of Pharmacy |
Depositing User: | Dimitrios Lamprou |
Date Deposited: | 19 Sep 2017 10:51 UTC |
Last Modified: | 05 Nov 2024 10:58 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/63483 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):