Wienen, M., Wyrowski, F., Menten, K. M., Urquhart, J.S., Walmsley, C. M., Csengeri, T., Koribalski, B. S., Schuller, F. (2018) ATLASGAL - Ammonia observations towards the southern Galactic Plane. Astronomy and Astrophysics, 609 . Article Number 125. ISSN 0004-6361. E-ISSN 1432-0746. (doi:10.1051/0004-6361/201526384) (KAR id:63205)
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/932kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1051/0004-6361/201526384 |
Abstract
Context: The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases.
Aims: We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant.
Methods: Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope.
Results: We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature.
Conclusions: A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1051/0004-6361/201526384 |
Uncontrolled keywords: | Submillimeter —Surveys —ISM: molecules —ISM: kinematics and dynamics — Stars: formation—Stars: massive |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | James Urquhart |
Date Deposited: | 04 Sep 2017 11:51 UTC |
Last Modified: | 05 Nov 2024 10:58 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/63205 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):