Montagna, Silvia, Wager, Tor, Feldman Barrett, Lisa, Johnson, Timothy D., Nichols, Thomas E. (2017) Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data. Biometrics, 74 (1). pp. 342-353. ISSN 0006-341X. E-ISSN 1541-0420. (doi:10.1111/biom.12713) (KAR id:61627)
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1111/biom.12713 |
Abstract
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised withmeta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in thearticle are available for Coordinate-Based Meta-Ana lysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas ofconsistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). Tosimultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci fromeach study as a doubly stochastic Poisson process, where the study-speci?c log intensity function is characterized as a linearcombination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factormodeling of the basis coe?cients. Within our framework, it is also possible to account for the e?ect of study-level covariates(meta-regression), signi?cantly expanding the capabilities of the current neuroimaging meta-analysis methods available. Weapply our methodology to synthetic data and neuroimaging meta-analysis datasets.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1111/biom.12713 |
Uncontrolled keywords: | Bayesian modeling; Factor analysis; Functional principal component analysis; Meta-analysis; Spatial point pattern data; Reverse inference |
Subjects: | Q Science > QA Mathematics (inc Computing science) |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science |
Depositing User: | Silvia Montagna |
Date Deposited: | 08 May 2017 10:33 UTC |
Last Modified: | 05 Nov 2024 10:55 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/61627 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):