Skip to main content
Kent Academic Repository

Whole genome sequencing of California condors is now utilized for guiding genetic management

Ryder, Oliver A., Miller, Webb, Ralls, Katherine, Ballou, Jonathan D, Steiner, Cynthia C, Mitelberg, Anna, Romanov, Michael N, Chemnick, Leona G., Mace, Michael, Schuster, Stephan and others. (2016) Whole genome sequencing of California condors is now utilized for guiding genetic management. In: International Plant and Animal Genome XXIV Conference, 8–13 January 2016, San Diego, CA, USA. (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided) (KAR id:61072)

PDF (Online version of the article) Other
Language: English

Restricted to Repository staff only
[thumbnail of Online version of the article]
PDF (Powerpoint presentation) Other
Language: English

Restricted to Repository staff only
[thumbnail of Powerpoint presentation]
Official URL:


The California condor is a critically endangered avian species that, in 1982, became extinct in the wild. Its survival has persevered through a captive breeding program and reintroduction efforts within its former range. As of April, 2015, 421 California condors, including 204 flying in the wild constituted the extant population. Concern regarding preservation of genetic diversity and inbreeding, have led to intensive population management supported by molecular genetics research and, more recently, the application of genomic methodologies. 36 complete California condor genomes, representing the whole gene pool of the species, have been sequenced identifying about 4 millions polymorphic sites (SNPs). This has allowed reassessment of kinship among the founder birds, which is now being applied to selecting breeding pairs for the ongoing captive propagation effort. A genetic disease, chondrodystrophy, is inherited consistent with an autosomal recessive mode of transmission in condors. Utilizing whole genome sequencing of affected chicks and their carrier parents, a series of linked markers localized in a 1 Mb region of the condor genome have been employed to detect carrier condors heterozygous for the lethal mutation. This information can be incorporated into population management to reduce the risk of reproductive failure, as reintroduced populations begin to expand.

Item Type: Conference or workshop item (Paper)
Subjects: Q Science > QH Natural history > QH426 Genetics
Q Science > QH Natural history > QH75 Conservation (Biology)
Q Science > QL Zoology
Divisions: Divisions > Division of Natural Sciences > Biosciences
Signature Themes: Food Systems, Natural Resources and Environment
Depositing User: Mike Romanov
Date Deposited: 28 Mar 2017 15:38 UTC
Last Modified: 20 Jun 2023 10:58 UTC
Resource URI: (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.