Oliveira, Luiz Otavio V.B., Otero, Fernando E.B., Miranda, Luis F., Pappa, Gisele L. (2016) Revisiting the Sequential Symbolic Regression Genetic Programming. In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). . pp. 163-168. IEEE ISBN 978-1-5090-3567-0. E-ISBN 978-1-5090-3566-3. (doi:10.1109/BRACIS.2016.039) (KAR id:59290)
PDF
Author's Accepted Manuscript
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
|
|
Download this file (PDF/236kB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1109/BRACIS.2016.039 |
Abstract
Sequential Symbolic Regression (SSR) is a technique that recursively induces functions over the error of the current solution, concatenating them in an attempt to reduce the error of the resulting model. As proof of concept, the method was previously evaluated in one-dimensional problems and compared with canonical Genetic Programming (GP) and Geometric Semantic Genetic Programming (GSGP). In this paper we revisit SSR exploring the method behaviour in higher dimensional, larger and more heterogeneous datasets. We discuss the difficulties arising from the application of the method to more complex problems, e.g., overfitting, along with suggestions to overcome them. An experimental analysis was conducted comparing SSR to GP and GSGP, showing SSR solutions are smaller than those generated by the GSGP with similar performance and more accurate than those generated by the canonical GP.
Item Type: | Conference or workshop item (Paper) |
---|---|
DOI/Identification number: | 10.1109/BRACIS.2016.039 |
Uncontrolled keywords: | semantics; training; genetic programming; time series analysis; measurement; boosting; machine learning algorithm |
Subjects: | Q Science > Q Science (General) > Q335 Artificial intelligence |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Fernando Otero |
Date Deposited: | 30 Nov 2016 13:36 UTC |
Last Modified: | 05 Nov 2024 10:51 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/59290 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):