Skip to main content
Kent Academic Repository

Rings of invariants for modular representations of the Klein four group

Sezer, Müfit, Shank, R. James (2016) Rings of invariants for modular representations of the Klein four group. Transactions of the American Mathematical Society, 368 . pp. 5655-5673. ISSN 0002-9947. E-ISSN 1088-6850. (doi:10.1090/tran/6516) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:57874)

This is the latest version of this item.

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1090/tran/6516

Abstract

We study the rings of invariants for the indecomposable modular representations of the Klein four group. For each such representation we compute the Noether number and give minimal generating sets for the Hilbert ideal and the field of fractions. We observe that, with the exception of the regular representation, the Hilbert ideal for each of these representations is a complete intersection.

Item Type: Article
DOI/Identification number: 10.1090/tran/6516
Subjects: Q Science > QA Mathematics (inc Computing science) > QA150 Algebra
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Depositing User: James Shank
Date Deposited: 13 Oct 2016 10:25 UTC
Last Modified: 05 Nov 2024 10:48 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/57874 (The current URI for this page, for reference purposes)

Available versions of this item

  • Rings of invariants for modular representations of the Klein four group. (deposited 13 Oct 2016 10:25) [Currently Displayed]

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.