Miguel-Hurtado, Oscar, Stevenage, Sarah V., Bevan, Chris, Guest, Richard (2016) Predicting sex as a soft-biometrics from device interaction swipe gestures. Pattern Recognition Letters, 79 . pp. 44-51. ISSN 0167-8655. (doi:10.1016/j.patrec.2016.04.024) (KAR id:55702)
PDF
Publisher pdf
Language: English |
|
Download this file (PDF/1MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://www.dx.doi.org/10.1016/j.patrec.2016.04.024 |
Abstract
Touch and multi-touch gestures are becoming the most common way to interact with technology such as smart phones, tablets and other mobile devices. The latest touch-screen input capacities have tremendously increased the quantity and quality of available gesture data, which has led to the exploration of its use in multiple disciplines from psychology to biometrics. Following research studies undertaken in similar modalities such as keystroke and mouse usage biometrics, the present work proposes the use of swipe gesture data for the prediction of soft-biometrics, specifically the user's sex. This paper details the software and protocol used for the data collection, the feature set extracted and subsequent machine learning analysis. Within this analysis, the BestFirst feature selection technique and classification algorithms (naïve Bayes, logistic regression, support vector machine and decision tree) have been tested. The results of this exploratory analysis have confirmed the possibility of sex prediction from the swipe gesture data, obtaining an encouraging 78% accuracy rate using swipe gesture data from two different directions. These results will hopefully encourage further research in this area, where the prediction of soft-biometrics traits from swipe gesture data can play an important role in enhancing the authentication processes based on touch-screen devices.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1016/j.patrec.2016.04.024 |
Subjects: | T Technology |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Tina Thompson |
Date Deposited: | 26 May 2016 08:18 UTC |
Last Modified: | 05 Nov 2024 10:45 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/55702 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):