Skip to main content
Kent Academic Repository

Oceanic hypervelocity impact events: a viable mechanism for successful panspermia?

Milner, Daniel, Burchell, Mark J., Creighton, Alan, Parnell, John (2006) Oceanic hypervelocity impact events: a viable mechanism for successful panspermia? International Journal of Astrobiology, 5 (3). pp. 261-268. ISSN 1473- 5504. (doi:10.1017/S1473550406003375) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:5360)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1017/S1473550406003375

Abstract

The idea that life migrates naturally between planetary bodies has grown in strength in recent years. This idea (panspermia) is believed to be possible via the mechanism of impact events. Previous research on this topic has concentrated on small meteoroids (micrometres to centimetres in diameter), with giant objects (metres to kilometres in diameter) being relatively ignored. This is due to the common belief that the larger objects vaporize on impact with the Earth's surface, which in most studies is taken as rock. Here we examine experimentally whether hypervelocity impacts into water result in significant survival of the impactors. For this study the University of Kent's two-stage light gas gun was used to accelerate millimetre-sized shale projectiles obliquely into a relatively deep water layer, at approximately 5 km s?1. Two shots have been made with surviving fragments being recovered from each. The surviving fragments appear highly shocked and display clear signs of cracking. The fragments that have been isolated contribute to a significant percentage (~10%) of the original unfired projectile mass and are as large as ~20% of the original projectile diameter. This indicates that oceanic hypervelocity impact events of large asteroids may deliver significant volumes of solid material to the Earth and thus provide a possible mechanism for successful panspermia.

Item Type: Article
DOI/Identification number: 10.1017/S1473550406003375
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Mark Burchell
Date Deposited: 02 Sep 2008 14:21 UTC
Last Modified: 05 Nov 2024 09:37 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/5360 (The current URI for this page, for reference purposes)

University of Kent Author Information

Burchell, Mark J..

Creator's ORCID: https://orcid.org/0000-0002-2680-8943
CReDIT Contributor Roles:

Creighton, Alan.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.