Skip to main content
Kent Academic Repository

Spectral flow, crossing forms and homoclinics of Hamiltonian systems

Waterstraat, Nils (2015) Spectral flow, crossing forms and homoclinics of Hamiltonian systems. Proceedings of the London Mathematical Society, 3 (111). pp. 275-304. ISSN 0024-6115. (doi:10.1112/plms/pdv028) (KAR id:51393)

Abstract

We prove a spectral flow formula for one-parameter families of Hamiltonian systems under homoclinic boundary conditions, which relates the spectral flow to the relative Maslov index of a pair of curves of Lagrangians induced by the stable and unstable subspaces, respectively. Finally, we deduce sufficient

conditions for bifurcation of homoclinic trajectories of one-parameter families of nonautonomous amiltonian vector fields.

Item Type: Article
DOI/Identification number: 10.1112/plms/pdv028
Additional information: Imported from arXiv
Subjects: Q Science > QA Mathematics (inc Computing science) > QA372 Ordinary differential equations
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Depositing User: Nils Waterstraat
Date Deposited: 03 Nov 2015 12:32 UTC
Last Modified: 05 Nov 2024 10:37 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/51393 (The current URI for this page, for reference purposes)

University of Kent Author Information

Waterstraat, Nils.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.