Worthington, Hannah, McCrea, Rachel S., King, Ruth, Griffiths, Richard A. (2018) Estimation of population size when capture probability depends on individual state. Journal of Agricultural, Biological, and Environmental Statistics, 24 (1). pp. 154-172. ISSN 1085-7117. E-ISSN 1537-2693. (doi:10.1007/s13253-018-00347-x) (KAR id:48970)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/803kB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://dx.doi.org/10.1007/s13253-018-00347-x |
Abstract
We develop a multi-state model to estimate the size of a closed population from capture–recapture studies. We consider the case where capture–recapture data are not of a simple binary form, but where the state of an individual is also recorded upon every capture as a discrete variable. The proposed multi-state model can be regarded as a generalisation of the commonly applied set of closed population models to a multi-state form. The model allows for heterogeneity within the capture probabilities associated with each state while also permitting individuals to move between the different discrete states. A closed-form expression for the likelihood is presented in terms of a set of sufficient statistics. The link between existing models for capture heterogeneity is established, and simulation is used to show that the estimate of population size can be biased when movement between states is not accounted for. The proposed unconditional approach is also compared to a conditional approach to assess estimation bias. The model derived in this paper is motivated by a real ecological data set on great crested newts, Triturus cristatus. Supplementary materials accompanying this paper appear online.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1007/s13253-018-00347-x |
Uncontrolled keywords: | Abundance; Closed population; Individual heterogeneity; Transition probabilities |
Subjects: | Q Science > QA Mathematics (inc Computing science) > QA276 Mathematical statistics |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science |
Funders: | Natural Environment Research Council (https://ror.org/02b5d8509) |
Depositing User: | Rachel McCrea |
Date Deposited: | 09 Jun 2015 14:09 UTC |
Last Modified: | 05 Nov 2024 10:33 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/48970 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):