Sun, Hualei, Woodruff, Daniel N., Cassidy, Simon J., Allcroft, Genevieve M., Sedlmaier, Stefan J., Thompson, Amber L., Bingham, Paul A., Forder, Susan D., Cartenet, Simon, Mary, Nicolas, and others. (2015) Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li\(_{1–x}\)Fe\(_x\)(OH)Fe\(_{1–y}\)Se. Inorganic Chemistry, 54 (4). pp. 1958-1964. ISSN 0020-1669. E-ISSN 1520-510X. (doi:10.1021/ic5028702) (KAR id:48079)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
|
|
Download this file (PDF/2MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1021/ic5028702 |
Abstract
Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li\(_{1–x}\)Fex(OH)Fe\(_{1–y}\)Se (x\(\sim\)0.2; 0.02 < \(y\) < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (\(y\) < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li\(_{1–x}\)Fe\(_x\)(OH) reservoir layer to fill vacancies in the selenide layer.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1021/ic5028702 |
Uncontrolled keywords: | Physics of Quantum Materials |
Subjects: |
Q Science > QC Physics > QC176 Solid state physics Q Science > QD Chemistry > QD478 Solid State Chemistry |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | Silvia Ramos Perez |
Date Deposited: | 28 Apr 2015 10:01 UTC |
Last Modified: | 05 Nov 2024 10:32 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/48079 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):