Skip to main content

The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis.

Lopes, Alexandra M., Miguel, Ricardo N., Sargent, Carole A., Ellis, Peter J.I., Amorim, António, Affara, Nabeel A. (2010) The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis. BMC molecular biology, 11 . p. 33. ISSN 1471-2199. (KAR id:46553)

PDF Publisher pdf
Language: English
Download (708kB) Preview
[img]
Preview
Official URL
http://www.biomedcentral.com/content/pdf/1471-2199...

Abstract

BACKGROUND

The Y chromosome of mammals is particularly prone to accumulate genes related to male fertility. However, the high rate of molecular evolution on this chromosome predicts reduced power to the across-species comparative approach in identifying male-specific genes that are essential for sperm production in humans. We performed a comprehensive analysis of expression of Y-linked transcripts and their X homologues in several human tissues, and in biopsies of infertile patients, in an attempt to identify new testis-specific genes involved in human spermatogenesis.

RESULTS

We present evidence that one of the primate-specific Y-linked ribosomal protein genes, RPS4Y2, has restricted expression in testis and prostate, in contrast with its X-linked homologue, which is ubiquitously expressed. Moreover, we have determined by highly specific quantitative real time PCR that RPS4Y2 is more highly expressed in testis biopsies containing germ cells. The in silico analysis of the promoter region of RPS4Y2 revealed several differences relative to RPS4Y1, the more widely expressed paralogue from which Y2 has originated through duplication. Finally, through comparative modelling we obtained the three dimensional models of the human S4 proteins, revealing a conserved structure. Interestingly, RPS4Y2 shows different inter-domain contacts and the potential to establish specific interactions.

CONCLUSIONS

These results suggest that one of the Y-linked copies of the ribosomal protein S4 is preferentially expressed during spermatogenesis and might be important for germ cell development. Even though RPS4Y2 has accumulated several amino acid changes following its duplication from RPS4Y1, approximately 35 million years ago, the evolution of the Y-encoded RPS4 proteins is structurally constrained. However, the exclusive expression pattern of RPS4Y2 and the novelties acquired at the C-terminus of the protein may indicate some degree of functional specialisation of this protein in spermatogenesis.

Item Type: Article
Subjects: Q Science > QH Natural history > QH426 Genetics
Q Science > QP Physiology (Living systems) > QP506 Molecular biology
Divisions: Faculties > Sciences > School of Biosciences
Depositing User: Peter Ellis
Date Deposited: 19 Jan 2015 17:46 UTC
Last Modified: 22 Jan 2020 04:07 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/46553 (The current URI for this page, for reference purposes)
Ellis, Peter J.I.: https://orcid.org/0000-0001-9709-7934
  • Depositors only (login required):

Downloads

Downloads per month over past year