Association of Sly with sex-linked gene amplification during mouse evolution: a side effect of genomic conflict in spermatids?

Ellis, Peter J.I. and Bacon, Joanne and Affara, Nabeel A. (2011) Association of Sly with sex-linked gene amplification during mouse evolution: a side effect of genomic conflict in spermatids? Human molecular genetics, 20 (15). pp. 3010-21. ISSN 1460-2083. (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. (Contact us about this Publication)
Official URL
http://hmg.oxfordjournals.org/content/20/15/3010.f...

Abstract

In common with other mammalian sex chromosomes, the mouse sex chromosomes are enriched for genes with male-specific function such as testis genes. However, in mouse there has been an unprecedented expansion of ampliconic sequence containing spermatid-expressed genes. We show via a phylogenetic analysis of gene amplification on the mouse sex chromosomes that multiple families of sex-linked spermatid-expressed genes are highly amplified in Mus musculus subspecies and in two further species from the Palaearctic clade of mouse species. Ampliconic X-linked genes expressed in other cell types showed a different evolutionary trajectory, without the distinctive simultaneous amplification seen in spermatid-expressed genes. The Palaearctic gene amplification occurred concurrently with the appearance of Sly, a Yq-linked regulator of post-meiotic sex chromatin (PMSC) which acts to repress sex chromosome transcription in spermatids. Despite the gene amplification, there was comparatively little effect on transcript abundance, suggesting that the genes in question became amplified in order to overcome Sly-mediated transcriptional repression and maintain steady expression levels in spermatids. Together with the known sex-ratio effects of Yq/Sly deficiency, our results suggest that Sly is involved in a genomic conflict with one or more X-linked sex-ratio distorter genes. The recent evolution of the novel PMSC regulator Sly in mouse lineages has significant implications for the use of mouse-model systems in investigating sex chromosome dynamics in spermatids.

Item Type: Article
Subjects: Q Science > QH Natural history > QH301 Biology
Q Science > QH Natural history > QH426 Genetics
Q Science > QP Physiology (Living systems) > QP506 Molecular biology
Divisions: Faculties > Sciences > School of Biosciences
Depositing User: Peter Ellis
Date Deposited: 19 Jan 2015 17:35 UTC
Last Modified: 21 Jan 2015 13:49 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/46551 (The current URI for this page, for reference purposes)
  • Depositors only (login required):