Meligkotsidou, Loukia, Panopoulou, Ekaterini, Vrontos, Ioannis D., Vrontos, Spyridon D. (2014) Out-of-sample equity premium prediction: A complete subset quantile regression approach. In: Conference on Econometric Methods for Banking and Finance, September 12-13, 2014, Bank of Portugal, Lisbon, Portugal. (Unpublished) (KAR id:44194)
PDF
Draft Version
Language: English |
|
Download this file (PDF/0B) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader |
Abstract
This paper extends the complete subset linear regression framework to a quantile regression setting. We employ complete subset combinations of quantile forecasts in order to construct robust and accurate equity premium predictions. Our recursive algorithm that selects, in real time, the best complete subset for each predictive regression quantile succeeds in identifying the best subset in a time- and quantile-varying manner. We show that our approach delivers statistically and economically significant out-of-sample forecasts relative to both the historical average benchmark and the complete subset mean regression approach.
Item Type: | Conference or workshop item (Paper) |
---|---|
Subjects: | H Social Sciences > HG Finance |
Divisions: | Divisions > Kent Business School - Division > Kent Business School (do not use) |
Depositing User: | Ekaterini Panopoulou |
Date Deposited: | 09 Nov 2014 17:35 UTC |
Last Modified: | 05 Nov 2024 10:28 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/44194 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):