Skip to main content

Convex Hull for Planar H-Polyhedra

Simon, Axel, King, Andy (2004) Convex Hull for Planar H-Polyhedra. International Journal of Computer Mathematics, 81 (3). pp. 259-271. ISSN 0020-7160. (doi:10.1080/00207160310001650034) (KAR id:37534)

PDF Author's Accepted Manuscript
Language: English
Download (251kB) Preview
[thumbnail of content.pdf]
This file may not be suitable for users of assistive technology.
Request an accessible format
Official URL:


Suppose $\langle A_i, \vec{c}_i \rangle$ are planar (convex) H-polyhedra, that is, (unknown variable A_i) \in \mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let (unknown variable P_i) = \{ \vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and (unknown variable n) = n_1 + n_2$. We present an (unknown variable O)(n \log n)$ algorithm for calculating an H-polyhedron $\langle A, \vec{c} \rangle$ with the smallest (unknown variable P) = \{ \vec{x} \in \mathbb{R}^2 \mid A\vec{x} \leq \vec{c} \}$ such that (unknown variable P)_1 \cup P_2 \subseteq P$.

Item Type: Article
DOI/Identification number: 10.1080/00207160310001650034
Subjects: A General Works
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Andy King
Date Deposited: 12 Dec 2013 15:56 UTC
Last Modified: 16 Nov 2021 10:14 UTC
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):


Downloads per month over past year