Simon, Axel, King, Andy (2004) Convex Hull for Planar H-Polyhedra. International Journal of Computer Mathematics, 81 (3). pp. 259-271. ISSN 0020-7160. (doi:10.1080/00207160310001650034) (KAR id:37534)
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/252kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1080/00207160310001650034 |
Abstract
Suppose $\langle A_i, \vec{c}_i \rangle$ are planar (convex) H-polyhedra, that is, (unknown variable A_i) \in \mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let (unknown variable P_i) = \{ \vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and (unknown variable n) = n_1 + n_2$. We present an (unknown variable O)(n \log n)$ algorithm for calculating an H-polyhedron $\langle A, \vec{c} \rangle$ with the smallest (unknown variable P) = \{ \vec{x} \in \mathbb{R}^2 \mid A\vec{x} \leq \vec{c} \}$ such that (unknown variable P)_1 \cup P_2 \subseteq P$.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1080/00207160310001650034 |
Subjects: | A General Works |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Andy King |
Date Deposited: | 12 Dec 2013 15:56 UTC |
Last Modified: | 05 Nov 2024 10:21 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/37534 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):